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Abstract

We describe plausible lattice-based constructions with properties that approximate the sought-
after multilinear maps in hard-discrete-logarithm groups, and show an example application of
such multi-linear maps that can be realized using our approximation. The security of our con-
structions relies on seemingly hard problems in ideal lattices, which can be viewed as extensions
of the assumed hardness of the NTRU function.
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1 Introduction

Bilinear maps are extremely useful tools in cryptography. After being used to construct non-
interactive key agreement [SOKO00], tripartite Diffie-Hellman [Jou00], and identity-based encryp-
tion [BF01], the applications of bilinear maps have become too numerous to name. Boneh and
Silverberg [BS03] argued that multilinear maps would have even more interesting applications, in-
cluding multipartite Diffie-Hellman and very efficient broadcast encryption. They attempted to
construct multilinear maps from abelian varieties (extending known techniques for constructing
bilinear maps), but they identified serious obstacles, and concluded that “such maps might have
to either come from outside the realm of algebraic geometry, or occur as ‘unnatural’ computable
maps arising from geometry”.

Since then, the persistent absence of cryptographically useful multilinear maps as not stopped
researchers from proposing applications of them. For example, Riickert and Schroder [RS09] use
multilinear maps to construct efficient aggregate and verifiably encrypted signatures without ran-
dom oracles. Papamanthou et al. [PTT10] show that compact multilinear maps give very efficient
authenticated data structures. Rothblum [Rot13] uses multilinear maps to construct a counterex-
ample to the conjecture that all bit-encryption schemes are KDM-secure (secure when given bit-
encryptions of the secret key).

Here, we construct multilinear maps from ideal lattices. Our multilinear maps are “noisy” and
bounded to polynomial degree. For very high degree, the “noisiness” overwhelms the signal, some-
what like for ciphertexts in somewhat homomorphic encryption schemes. In light of their noisiness,
one could say that our multilinear maps are indeed “unnatural” computable maps arising from
geometry. Our candidate multilinear maps differ quite substantially from the “ideal” multilinear
maps envisioned by Boneh and Silverberg, in particular some problems that are hard relative to
contemporary bilinear maps are easy with our construction (see Section 4.4). Nonetheless, the
multilinear analog of the decision Diffie-Hellman problem appears hard in our construction, which
gives cause for optimism about its applications in cryptography. In this paper we only demonstrate
the applicability of our candidate to the “obvious” application of multipartite Diffie-Hellman key
exchange, but other applications are surly possible.

The boundedness of our encodings has interesting consequences, both positive and negative. On
the positive side, it hinders an attack based on Boneh and Lipton’s subexponential algorithm for
solving the discrete logarithm in black box fields [BL96]. This attack cannot be used to solve the
“discrete log” problem in our setting, since their algorithm requires exponentiations with exponen-
tial degree. On the negative size, the dependence between the degree and parameter-size prevents
us from realizing applications such that Papamanthou et al. [PTT10] that needs “compact” maps.
Similarly, so far we were not able to use our maps to realize Rothblum’s counterexample to the
KDM-security of bit encryption conjecture [Rot13]: That counterexample requires degree that is
polynomial, but a polynomial that is always just out of our reach of our parameters.

The security of the multilinear-DDH problem in our constructions relies on new hardness as-
sumptions, and we provide an extensive cryptanalysis to validate these assumptions. To make
sure that our constructions are not “trivially” insecure, we prove that our constructions are secure
against adversaries that merely run a straight-line program. We also analyze our constructions
with respect to the best known averaging, algebraic and lattice attacks. Many of these attacks
have been published before [CS97, HKLT00, Gen01, GS02, Szy03, HGS04, NRO6] in cryptanalysis
of the NTRU [HPS01, HHGP103] and GGH [GGH97| signature schemes. We also present new
attacks on principal ideal lattices, which arise in our constructions, that are more efficient than



(known) attacks on general ideal lattices. Our constructions remain secure against all of the at-
tacks that we present, both old and new. However, we feel that more cryptanalysis needs to be
done, and this is partly why we have tried to write our cryptanalysis sections as a thorough survey
that will serve as a useful starting point for cryptanalysts.

A brief overview. Our constructions work in polynomial rings and use principal ideals in these
rings (and their associated lattices). In a nutshell, an instance of our construction has a secret
short ring element g € R, generating a principal ideal Z = (g) C R. In addition, it has an integer
parameter ¢ and another secret z € R/qR, which is chosen at random (and hence is not small).

We think of a term like ¢g” in a discrete-log system as an “encoding” of the “plaintext expo-
nent” z. In our case the role of the “plaintext exponents” is played by the elements in R/Z (i.e.
cosets of 7), and we “encode” it via division by z in R,. In a few more details, our system provides
many levels of encoding, where a level-i encoding of the coset ez = e + 7 is an element of the
form ¢/z' mod q where ¢ € ez is short. It is easy to see that such encodings can be both added
and multiplied, so long as the numerators remain short. More importantly, we show that it is
possible to publish a “zero testing parameter” that enables to test if two elements encode the same
coset at a given level, without violating security (e.g., it should still be hard to compute = from
an encoding of = at higher levels). Namely, we add to the public parameters an element of the
form p,s = h - 2"/g mod ¢ for a not-too-large h, and show that multiplying an encoding of 0 by
pzt (mod q) yields a small element, while multiplying an encoding of a non-zero by p, (mod q)
yields a large element. Hence we can distinguish zero from non-zero, and by subtraction we can
distinguish two encodings of the same element from encodings of two different elements.

Our schemes are somewhat analogous to graded algebras, hence we sometimes call them graded
encoding schemes. Our schemes are quite flexible, and for example can be modified to support the
analog of asymmetric maps by using several different 2’s. On the other hand, other variants such
as composite-order groups turn out to be insecure with our encodings (at least when implemented
in a straightforward manner).

Organization. We define the general notion of encoding that we use in Section 2, as well an
abstract notion of our main hardness assumption (which is a multilinear analog of DDH). Then in
Section 3 we provide some background on ideal lattices, and in Section 4 we describe our construc-
tion. Our cryptanalysis of the new construction is described in the Section 6.

Applications. In Section 5 we describe the application to multipartite key agreement. Using
our multilinear maps [GGH"13] have provided a construction of an attribute based encryption
(ABE) scheme for general circuits. Concurrently and independently Gorbunov, Vaikuntanathan,
and Wee [GVW13] also achieve ABE for circuits. One nice feature of their result is that they reduce
security to the Learning with Errors (LWE) problem. Goldwasser, Kalai, Popa, Vaikuntanathan,
and Zeldovich [GKP*13] show how one can use such an ABE scheme along with fully homomorphic
encryption to construct a succinct single use functional encryption scheme. This in turn implies
results for reusable Yao garbled circuits and other applications. Subsequent to our work, using our
multilinear maps, Garg, Gentry, Sahai, and Waters [GGSW13] constructed a witness encryption
scheme where a user’s decryption key need not be an actual “key” at all, but rather can be a
witness for some arbitrary NP relation specified by the encrypter (the encrypter itself may not
know a witness).



2 Multilinear Maps and Graded Encoding Systems

Below we define formally our notion of a “approximate” multilinear maps, which we call graded
encoding schemes (termed after the notion of graded algebra). To make the analogy and differences
from multilinear maps more explicit, we begin by recalling the notion of cryptographic multilinear
maps of Boneh and Silverberg [BS03] (using a slightly different syntax).

2.1 Cryptographic Multilinear Maps

Definition 1 (Multilinear Map [BS03]). For k+1 cyclic groups G1, . .., Gy, Gr (written additively)
of the same order p, an k-multilinear map e : G1 X --- X G, — G7 has the following properties:

1. For elements {g; € G;}i=1,. x, index i € [k] and integer a € Zy, it holds that
e(g1y- s Giyer s Gr) = €(g1, .-, k)

2. The map e is non-degenerate in the following sense: if the elements {g; € G;}i=1,.. x, are all
generators of their respective groups, then e(gi,...,gx) is a generator of Gr.

Remark 1. Boneh and Silverberg considered in [BS03] only the symmetric case G1 = -+ = G,
the asymmetric case with different G;’s was considered, e.g., by Rothblum in [Rot13].

2.1.1 Efficient Procedures

To be useful for cryptographic applications, we need to be able to manipulate (representations of)
elements in these groups efficiently, and at the same time we need some other manipulations to
be computationally hard. Specifically, a cryptographic multilinear map scheme consists of efficient
procedures for instance-generation, element-encoding validation, group-operation and negation,
and multilinear map, MMP = (InstGen, EncTest, add, neg, map). These procedures are described
below.

Instance Generation. A randomized algorithm InstGen that takes the security parameter A and
the multi-linearity parameter  (both in unary), and outputs (Gi,...,Gr,p,€,91,--,Gx)-
Here the G;’s and G describe the groups, p € Z is their order, e : Gy X --- X G, — Gr
describes an k-multilinear map as above, and g; € {0,1}* fori = 1, ..., k encode generators in
these groups. To shorten some of the notations below, we denote params = (G1,...,Gr,p,e).

Element Encoding. Given the instance params from above, an index ¢ € [k], and a string = €
{0,1}*, EncTest(params,i,x) decides if x encodes an element in G; (and of course the g;’s
output by the instance-generator are all valid encodings). Similarly EncTest(params, x + 1, x)
efficiently recognizes description of elements in Gr.

It is usually assumed that elements have unique representation, namely for every ¢ there are
only p different strings representing elements in G;. Below we therefore identify elements
with their description, e.g. referring to “x € G;” rather than “z is a description of an element

in Gi” .

Group Operation. Given z,y € G;, add(params, i, z, y) computes x+y € G; and neg(params, i, x)
computes —x € G;. This implies also that for any a € Z, we can efficiently compute a-x € Gj.



Multilinear Map. For {z; € G;}i=1,.. «, map(params, z1,...,z,) computes e(z1,...,z,) € Gr.

Another property, which was used by Papamanthou et al. [PTT10], is compactness, which means
that the size of elements in the groups (as output by the instance generator) is independent of .
We note that our multilinear maps will not satisfy this requirement, and are therefore unsuitable
for the application in [PTT10].

2.1.2 Hardness Assumptions

For the multilinear map to be cryptographically useful, at least the discrete logarithm must be
hard in the respective groups, and we usually also need the multilinear-DDH to be hard.

Multilinear Discrete-log (MDL). The Multilinear Discrete-Log problem is hard for a scheme
MMP, if for all k > 1, all i € [k], and all probabilistic polynomial time algorithms, the discrete-
logarithm advantage of A,

AdvDlog v r1p 4.4 (A) df by [.A(params, i, gi,-g;)) =a : (params,gi,...,q;) < InstGen(l)‘, 1%), a0 +— Zp],

is negligible in A

Multilinear DDH (MDDH). For a symmetric scheme MMP (with G; = Gy = ---), the
Multilinear Decision-Diffie-Hellman problem is hard for MMP if for any x and every probabilistic
polynomial time algorithms A, the advantage of A in distinguishing between the following two
distributions is negligible in A:

K
(params7g,a0g, a1g,...,0x4, (H al) : e(g s 79))
=0

and (params, g, apg, 019, ...,05g, a-€(g,...,9))

where (params, g) < InstGen(1*,1%) and o, ag, a1, . . .,y are uniformly random in L.

2.2 Graded Encoding Schemes

The starting point for our new notion is viewing group elements in multilinear-map schemes as just
a convenient mechanism of encoding the exponent: Typical applications of bilinear (or multilinear)
maps use « - g; as an “obfuscated encoding” of the “plaintext integer” o € Z,. This encoding
supports limited homomorphism (i.e., linear operations and a limited number of multiplications)
but no more. In our setting we retain this concept of a somewhat homomorphic encoding, and
have an algebraic ring (or field) R playing the role of the exponent space Z,. However we dispose
of the multitude of algebraic groups, replacing them with “unstructured” sets of encodings of ring
elements.

Perhaps the biggest difference between our setting and the setting of cryptographic multilinear
maps, is that our encoding is randomized, which means that the same ring-element can be encoded
in many different ways. (We do not even insist that the “plaintext version” of a ring element has
a unique representation.) This means that checking if two strings encode the same element may
not be trivial, indeed our constructions rely heavily on this check being feasible for some encodings
and not feasible for others.



Another important difference is that our system lets us multiply not only batches of x encodings
at the time, but in fact any subset of encodings. This stands in stark contrast to the sharp threshold
in multi-linear maps, where you can multiply exactly x encodings, no more and no less.

A consequence of the ability to multiply any number of encodings is that we no longer have a
single target group, instead we have a different “target group” for any number of multiplicands.
This yields a richer structure, roughly analogous to graded algebra. In its simplest form (analogous
to symmetric maps with a single source group), we have levels of encodings: At level zero we have
the “plaintext” ring elements o € R themselves, level one corresponds to « - g in the source group,
and level-i corresponds to a product of ¢ level-1 encodings (so level-x corresponds to the target
group from multilinear maps).

Definition 2 (k-Graded Encoding System). A k-Graded Encoding System consists of a ring R and
a system of sets S = {Si(a) Cc{0,1}*:a € R, 0 <i<k,}, with the following properties:

1. For every fixed index i, the sets {Si(a) i« € R} are disjoint (hence they form a partition of
S €Y, 5).

2. There is an associative binary operation ‘4’ and a self-inverse unary operation ‘—’ (on {0,1}*)
such that for every ai,as € R, every index i < k, and every u; € Si(al) and uy € SZ-(OQ), it
holds that

UL +ug € Si(aﬁaz) and —uj € Si(_al)

where a; + ag and —ay are addition and negation in R.

3. There is an associative binary operation ‘X’ (on {0,1}*) such that for every ay, s € R, every
11,12 with i1 +io < K, and every u; € Si(lal) and uy € Si(;Z), it holds that uy X ug € SZ(IO;ISZ)
Here oy - ao is multiplication in R, and i1 + 19 is integer addition.

Clearly, Definition 2 implies that if we have a collection of n encodings u; € S, (a] ), ij=12...,n,

]
then as long as Zj 1j < Kk weget up X - Xu, € Sl(ll_lﬁajr)ln

2.2.1 Efficient Procedures, the Dream Version

To be useful, we need efficient procedures for manipulating encodings well as as hard computational
tasks. To ease the exposition, we first describe a “dream version” of the efficient procedures (which
we do not know how to realize), and then explain how to modify them to deal with technicalities
that arise from our use of lattices in the realization.

Instance Generation. The randomized InstGen(l’\, 1%) takes as inputs the parameters A, , and
outputs (params, p,:), where params is a description of a k-Graded Encoding System as above,

and py is a zero-test parameter for level x (see below).
Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a € Séa) for a
nearly uniform element o €r R. (Note that we require that the “plaintext” o € R is nearly

uniform, but not that the encoding a is uniform in Séa).)

Encoding. The (possibly randomized) enc(params,i,a) takes a “level-zero” encoding a € S’éa) for
(a)

some o € R and index ¢ < k, and outputs the “level-i” encoding u € S;” for the same «.



Addition and negation. Given params and two encodings relative to the same index, u; € Si(al)
and us € Si(”), we have add(params, i, u1,us) = uj + ug € S§a1+02), and neg(params, i, u;) =

—Uuj € Sl-(_al).

Multiplication. For u; € Si(fl), Uy € Si(;lz)

(a1-a2)
Ul X ug € Sl-lJriQ

such that i1+is < K, we have mul(params, i1, u1, g, ug) =

Zero-test. The procedure isZero(params, u) output 1 if u € Sﬁf) and 0 otherwise. Note that in

conjunction with the subtraction procedure, this lets us test if ui,uo € Sk encode the same
element o € R.

Extraction. This procedure extracts a “canonical” and “random” representation of ring elements
from their level-x encoding. Namely ext(params, p,:, u) outputs (say) s € {0,1}*, such that:

(a) For any a € R and two uj,us € Sﬁf“), ext(params, p,;, u1) = ext(params, p,, u2),
(b) The distribution {ext(params,p,u) : a €g R,u € S,(f)} is nearly uniform over {0,1}*.

2.2.2 Efficient Procedures, the Real-Life Version

Our realization of the procedures above over ideal lattices uses noisy encodings, where the noise
increases with every operation and correctness is only ensured as long as it does not increase too
much. We therefore modify the procedures above, letting them take as input (and produce as
output) also a bound on the noise magnitude of the encoding in question. The procedures are
allowed to abort if the bound is too high (relative to some maximum value which is part of the
instance description params). Also, they provide no correctness guarantees if the bound on their
input is “invalid.” (When B is a noise-bound for some encoding u, we say that it is “valid” if it is
at least as large as the bound produced by the procedure that produced u itself, and moreover any
encoding that was used by that procedure (if any) also came with a valid noise bound.) Of course
we also require that these procedure do not always abort, i.e. they should support whatever set of
operations that the application calls for, before the noise becomes too large. Finally, we also relax
the requirements on the zero-test and the extraction routines. Some more details are described
next:

Zero-test. We sometime allow false positives for this procedure, but not false negatives. Namely,

isZero(params, p,, u) = 1 for every u € S,({O), but we may have isZero(params, p,;, u) = 1 also

for some u ¢ S,(.go). The weakest functionality requirement that we make is that for a uniform
random choice of @ €g R, we have

PrR Ju € S s.t isZero(params, p,s, u) = 1| = negligible()). (1)
QER

Additional requirements are considered security features (that a scheme may or may not
possess), and are discussed later in this section.

Extraction. Our construction from Section 4 does not support full canonicalization. Instead, we
settle for ext(A, p,, u) that has a good chance of producing the same output when applied
to different encoding of the same elements. Specifically, we replace properties (a)-(b) from
above by the weaker requirements:



(') For a randomly chosen a < samp(params), if we run the encoding algorithm twice to
encode o at level k and then extract from both copies then we get:

a < samp(params)
uj < enc(params, k, a) > 1 — negligible(\).
ug < enc(params, K, a)

ext(params, p,, u1)

Pr
= ext(params, py, u2)

(b") The distribution {ext(params, p,:, u) : a < samp(params), u < enc(params, k,a)} is nearly
uniform over {0, 1}*.

We typically need these two conditions to hold even if the noise bound that the encoding
routine takes as input is larger than the one output by samp (upto some maximum value).

2.2.3 Hardness Assumptions

Our hardness assumptions are modeled after the discrete-logarithm and DDH assumptions in mul-
tilinear groups. For example, the most direct analog of the discrete-logarithm problem is trying
to obtain a level-zero encoding a € S((]a) for « € R from an encoding relative to some other index
1> 0.

The analog of DDH in our case roughly says that it is hard to recognize encoding of products,
except relative to indexes upto k. In other words, given k+1 level-one encoding of random elements
it should be infeasible to generate a level-x encoding of their product, or even to distinguish it from
random. To formalize the assumption we should specify how to generate level-x encodings of the
“the right product” and of a random element. The definition below just uses the encoding routine
for that purpose, but see the appendix for a more general treatment. One way to formalize it is by
the following process. (Below we suppress the noise bounds for readability):

1. (params,p,) « InstGen(1%,1%)

2. Fori=1,...,k+1:

3. Choose a; < samp(params) // level-0 encoding of random «; €g R
4. Set u; < enc(params, 1,a;) // level-1 encoding of the a;’s

5. Set a ="} a; // level-0 encoding of the product

6. Choose a < samp(params) // level-0 encoding of a random element
7. Set @ < enc(params, k, @) // level-x encoding of the product

8. Set U < enc(params, k, a) // level-k encoding of random

(We note that with the noise bound, it may be important that the encoding routines for both
a and a get as input the same bound, i.e., the largest of the bounds for @ and a.) The GDDH
distinguisher gets all the level-one u;’s and either @ (encoding the right product) or @ (encoding
a random element), and it needs to decide which is the case. In other words, the GDDH assump-
tion says that for any setting of the parameters, the following two distributions, defined over the
experiment above, are computationally indistinguishable:

Dappu = {(params, pyt, {u;}i, )} and Dranp = {(params, pyt, {u;}i, 4)}.

Zero-test security. In some settings (such as NIZK) we may be concerned with adversaries that
can generate encodings in a malicious way and submit them to the zero-test procedure. In such
settings, the statistical property from Equation (1) is not sufficient, instead we would like the zero-
test to accept only encoding of zero at the right level. This can be statistical (i.e. no false positive
exist) or computational (i.e. it is hard to find them).



Definition 3. A graded-encoding scheme GE enjoys statistical zero-test security if the only strings
that pass the zero-test are encodings of zero, except with a negligible probability over the instance
generation. That is, for every k:
Pr [Ju¢ S,(f) s.t. isZero(params, p,, u) = 1] < negligible(\),
params,pz¢

where the probability is taken over (params, py;) < InstGen(1*,1%). GE enjoys computational zero-
test security if for every adversary A and parameters as above:

Pr [
(params,p )< InstGen(1*,1%)
us—A(params,pst)

ué SS}” but isZero(params, p,:,u) = 1| < negligible(\).

3 Preliminaries

Lattices. A lattice L C R" is an additive discrete sub-group of R™. Every (nontrivial) lattice
has bases: a basis for a full-rank lattice is a set of n linearly independent points bi,...,b, € L
such that L = {d°1" | z;b; : z; € Z Vi}. If we arrange the vectors b; as the columns of a matrix
B € R™™ then we can write L = {Bz : z € Z"}. If B is a basis for L then we say that B spans
L. For a lattice L C R"™, its dual lattice consists of all the points in span(L) that are orthogonal to
L modulo one, namely L* = {y € span(L) : Vx € L, (x,y) € Z}

Gaussians. For a real ¢ > 0, define the (spherical) Gaussian function on R™ with parameter o as
po () = exp(—n||z||?/o?) for all & € R™. This generalizes to ellipsoid Gaussians, where the different
coordinates are jointly Gaussian but not independent, where we replace the parameter o € R by
the (square root of the) covariance matrix ¥ € R"*". For a rank-n matrix S € R"™*" the ellipsoid
Gaussian function on R™ with parameter S is defined by pg(x) = exp (—mz? (STS)'z) Vo € R".
Obviously this function only depends on ¥ = ST'S and not on the particular choice of S. It is
also clear that the spherical case can be obtained by setting S = ol,,, with I, the n-by-n identity
matrix.

The ellipsoid discrete Gaussian distribution over lattice L with parameter SisVx € L, Dy, g(x) =
ps(x)/ps(L), where ps(L) denotes ) ., ps(x). In other words, the probability Dy, g(x) is simply
proportional to pg(x), the denominator being a normalization factor. The same definitions apply
to the spherical case, Dy, (-).

Smoothing parameter. Micciancio and Regev defined in [MRO7] the smoothing parameter for a
lattice L and real € > 0, denoted 7(L), as the smallest s such that p;/,(L* \ {0}) < e. Intuitively,
for a small enough ¢, the number 7. (L) is sufficiently larger than L’s fundamental parallelepiped so
that sampling from the corresponding Gaussian “wipes out the internal structure” of L. It is easy
to show that the size of vectors drawn from Dy, g is roughly bounded by the largest singular value
of S. (Recall that the largest and least singular values of a full rank matrix X € R"*™ are defined
as 01(X) =sup(Ux) and 0,(X) = inf(Ux), respectively, where Ux = {||Xul| : v € R", [|[u]| = 1}.)

Lemma 1. For a rank-n lattice L, constant 0 < € < 1 and matriz S s.t. o,(S) > ne(L), we have
Pr (Joll 2 o(8)y) < £ 2n.

’U(*'DL}S

Sum of Discrete Gaussians. A recent work [AGHS12] considered the process that begins by
choosing “once and for all” m points in a lattice L, drawn independently from a “wide discrete



Gaussian” x; < Dp, 5. Once the x;’s are fixed, they are arranged as the rows of an m-by-n matrix
X = (x1]z2|...|zm)T, and we consider the distribution Dy, induced by choosing an integer

vector v from a discrete spherical Gaussian over Z™ with parameter o and outputting y = X7 v,

Exo def {XTv : v <+ Dgm ,}. [AGHS12] proved that with high probability over the choice of X, the

distribution Dx . is statistically close to the ellipsoid Gaussian Dy ,x, and moreover the singular
values of X are of size roughly o+/m:

Theorem 1 ([AGHS12]). Let L be a full-rank lattice L C R™ and B a matriz whose rows form a
basis of L, and denote x = o1(B)/on(B). Also let € be negligible in n, and let m, s, s’ be parameters
such that s > n(Z"), m > 10nlog(8(mn)tPsx) and s’ > 4mny In(1/¢).

Then, when choosing the rows of an m-by-n matriz X from the spherical Gaussian over L,
X < (D)™, we have with all but probability 2-0(m) pver the choice of X, that the statistical
distance between Ex ¢ and the ellipsoid Gaussian Dy, ¢ x is bounded by 2e.

Lemma 2 ([AGHS12]). There exists a universal constant K > 1 such that for all m > 2n, € > 0
and every n-dimensional real lattice L C R™, the following holds: Choosing the rows of an m-

by-n matriz X independently at random from a spherical discrete Gaussian on L with parameter
p>2Kn.(L), X < (Dr,)™, we have

Pr [8\/27rm/K <on(X) <o1(X) < pKvV2rm| > 1 — (4me + O(exp(—m/K))).

Ideal lattices. For m a power of two, we consider the 2n’th cyclotomic polynomial ring R =
Z[X]/(X™ + 1), and identify an element w € R with the coefficient vector! of the degree-(n — 1)
integer polynomial that represents w. In this way, R is identified with the integer lattice Z".
Additionally we sometimes consider also the ring R, = R/qR = Z4[X]/(X™ + 1) for a (large
enough) integer ¢. Obviously, addition in these rings is done component-wise in their coefficients,
and multiplication is polynomial multiplication modulo the ring polynomial X™ + 1. In some cases
we also consider the corresponding number field K = Q[X]/(X™ + 1), which is likewise associated
with the linear space Q™.

For an element g € R, let (g) be the principal ideal in R generated by g (alternatively, the
sub-lattice of Z™" corresponding to this ideal), namely (g) = {g-u : u € R}. We call (g) an ideal
lattice to stress its dual interpretation as both an ideal and a lattice. Let B(g) denote the basis of
the lattice (g) consisting of the vectors {g, Xg, X?g,..., X" !g}.

For an arbitrary element u € R, denote by [u]g the reduction of w modulo the fundamental cell
of B(g), which is symmetric around the origin. To wit, [u]g is the unique element v’ € R such that
u—u' € (g) and o' = 3"} o; X'g where all the a;’s are in the interval [—3,3). We use the similar
notation [t], for integers ¢, p to denote the reduction of ¢ modulo p into the interval [—p/2,p/2).

4 The New Encoding Schemes

An instance of our basic construction is parametrized by the security parameter A and the required
multi-linearity level x <poly(\). Based on these parameters, we choose a cyclotomic ring R =

1Other representations of polynomials are also possible, for example representing a polynomial by its canonical
embedding is sometimes preferable to the coefficient representation. Here we stick to coefficient representation for
simplicity.



Z[X]/(X™ 4+ 1) (where n is large enough to ensure security), a modulus ¢ that defines R, = R/qR
(with ¢ large enough to support functionality), and another parameter m (chosen so that we can
apply Theorem 1). The specific constraints that these parameters must satisfy are discussed at the
end of this section, an approximate setting to keep in mind is n = O(kA?), ¢ = 2/* and m = O(n?).

4.1 The Basic Graded Encoding Scheme

An instance of our scheme relative to the parameters above encodes elements of a quotient ring
QR = R/Z, where 7 is a principal ideal Z = (g) C R, generated by a short vector g. Namely, the
“ring elements” that are encoded in our scheme are cosets of the form e + Z for some vector e.
The short generator g itself is kept secret, and no “good” description of Z is made public in our
scheme. In addition, our system depends on another secret element z, which is chosen at random
in R, (and hence is not short).

A level-zero (“plaintext”) encoding of a coset e + Z € R/Z is just a short vector in that
coset (which must exist, since the generator g is short and therefore the basic cell of Z is quite
small). For higher-level encodings, a level-i encoding of the same coset is a vector of the form
c/z' € R, with ¢ € e + T short. Specifically, for i € {0,1,..., ]} the set of all level-i encodings is
S; = {c/z' € R, : ||c|| < ¢'/®}, and the set of levle-i encodings of the “plaintext element” e + T

is SZ-(eJrI) ={c/Z" € Ry:cce+T, |c| < q¢'®}. Throughout the construction we use the size
of the numerator as the “noise level” in the encoding. Namely, with each level-i encoding ¢/z" we
produce also an upper bound on ||c||.

Instance generation: (params,p,:) < InstGen(1*,1%). Our instance-generation procedure chooses
at random the ideal-generator g and denominator z, as well as several other vectors that are used in
the other procedures and are described later in the section. The denominator z is chosen uniformly
at random in R,. For technical reasons, the generator g € R should be chosen so that both g and
g~ ! € K are short. (Recall that we denote K = Q[X]/(X™ + 1). The reason that we need g~ € K
to be short is explained when we describe the zero-testing procedure.) We simply draw g from
a discrete Gaussian over Z", say g ¢ Dzn, with ¢ = O(y/n). Clearly g itself is short (of size
less than oy/n), and we claim that with good probability its inverse in the field of fractions is also
rather short. To see this, notice that with probability 1 —o(1/n), evaluating g at any complex n’th
root of unity ¢ € C yields g(¢) which is not too tiny, say larger than 1/n. Hence with probability
1—o0(1) we have g~1(¢) = 1/g(¢) < n for all the primitive 2n’th roots of unity ¢, which means that
g~ ! itself is not too large, say ||1/g|| < n?. We can draw repeatedly until we get this condition to
hold.

Once we have g,z, we choose and publish some other elements in R, that will be used for
the various procedures below. Specifically we have m + 1 elements randy, ..., X,,,y that are used
for encoding, and an element p,: that is used as a zero-testing parameter. These elements are
described later. finally we also choose a random seed s for a strong randomness extractor. The
instance-generation procedure outputs params = (n, q,y, {X;}i, s) and py.

Sampling level-zero encodings: d < samp(params). To sample a level-zero encoding of a ran-
dom coset, we just draw a random short element in R, d <— Dzn o/, where o' = on (for o that was
used to sample g). Since whp o’ > 15-x(Z), then the induced distribution over the cosets of 7 is
close to uniform, upto a negligible distance. Also the size of this level-zero encoding is bounded by
o’\/n (and we use this as our noise-bound for this encoding).

10



Encodings at higher levels: u; < enc(params, i, d). To allow encoding of cosets at higher levels,
we publish as part of our instance-generation a level-one encoding of 1 + Z, namely an element
y = [a/z], where a € 1+ T is short. A simplistic method of doing that is drawing a < D117,
then computing y from a. (Later we describe a somewhat more involved procedure, which we
believe is more secure.) Given a level-zero encoding d as above, we can multiply it by y over
R, to get u; := [yd],. Note that u; = [da/z],, where da € d + Z as needed, and the size of
the numerator is bounded by ||d|| - ||a|| - v/n = poly(n). More generally we can generate a level-i
encoding as u; := [dy'], = [da’/z'],. The numerator da’ is obviously in d + Z, and its size is at
most ||| - [lal|* - n'/>.

The above encoding is insufficient, however, since from w; and y it is easy to get back d by
simple division in R,. We therefore include in the public parameters also the “randomizers” x;,
these are just random encodings of zero, namely x; = [b;/z], where the b;’s are short elements in Z.
A simplistic procedure for choosing these randomizers would be to draw short these elements as
b; < Dz, and publish x; = [b;/z],. As we note in Section 6.3.2, we have reasons to suspect that
this simplistic method is insecure so instead we use a somewhat more involved sampling procedure,
see details in Section 6.3.2. Below we denote by X the matrix with the vectors x; as rows, namely
X = (x1]...|xm)T. We also use B to denote the matrix with the numerators b; as rows, i.e.,
B = (by]...|by)T.

We use the x;’s to randomize level-one encodings: Given u’ = [¢//z], with noise-bound ||| < ~,
we draw an m-vector of integer coefficients r <— Dzm ,« for large enough o* (e.g. o = 2)y), and
output

w = X, = Yl (= [CT )

We write Br as a shorthand for ), r;b; and similarly X as a shorthand for ), r;x;.

Since all the b;’s are in the ideal Z, then obviously ¢ + Zl r;b; is in the same coset of 7 as
c itself. Moreover since ||b;|| < poly(n) then ||Br| < o*poly(m,n). If indeed ||| < 7, then
| + Br| < v+ o*poly(m,n). We also claim that the distribution of w is nearly independent of
original u/ (except of course its coset). To see why, note that if the b;’s are chosen from a wide
enough spherical distribution then we can use Theorem 1 to conclude that Br is close to a wide
ellipsoid Gaussian. With our choice of ¢* the “width” of that distribution is much larger than the
original ¢’, hence the distribution of ¢’ + B is nearly independent of ¢’, except in the coset that
it belongs to.

A different approach is to re-randomize y, setting y’ := y + Xr and then encode via u; :=
[y'd]y. This does not have the information-theoretic same-distribution guarantee as above (since
the distributions [y’d], and [y’d’], may differ, even if d,d’ are both short and in the same coset).
But on the plus side, it is more convenient to use this re-randomization method for encoding at
high levels i > 1: After computing the randomized y’, we can use it by setting u; := [d(y’)],-

Remark 2. Note that in the above description we used the matriz X to randomize level-one encod-
ings. Using similar pubic parameter X; we can generalize the re-randomization procedure to work
at any level i < k. In particular we abstract this procedure as reRand(y,i,u’): Given u' = [¢//z'],
with noise-bound ||| < 7y, we draw an m-vector of integer coefficients v <— Dgm 5 for large enough
o* (e.g. o* =2"y), and output u = [u' +X;r], as a re-randomized version of u. Using the same
argument as above we can conclude that the distribution generated in this way will be independent
of ¢, except in the coset that it belongs to.
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Note that for some applications it might be useful to use the re-randomization operation multiple
times. We consider the case in which a constant number of re-randomizations is needed. In this
case, with the (" re-randomization (for any constant £) we can generate an encoding by choosing v
from Dgm o« where o* = 2X and re-randomizing as above. Since the addition and multiplication of
constant number of terms increases noise by a small factor we can claim that each re-randomization
wipes the structure that was present previously (even with multiple additions and multiplications).

We define a canonicalizing encoding algorithm cency(params, i, u’) which takes as input an en-
coding of u' and generates another encoding according with a noise factor of 2N,

Adding and multiplying encodings. It is easy to see that the encoding as above is additively
homomorphic, in the sense that adding encodings yields an encoding of the sum. This follows
since if we have many short ¢;’s then their sum is still short, || 3, ¢;|| < ¢, and therefore the sum
c=3¢; =[>;¢jlg € Ry belong to the coset > _,(c; + ). Hence, if we denote u; = ¢;/z € Ry
then each u; is an encoding of the coset ¢; + 7, and the sum [}, u;]q is of the form ¢/z where ¢
is still a short element in the sum of the cosets.

Moreover, since Z is an ideal then multiplying upto s encodings can be interpreted as an
encoding of the product, by raising the denominator to the appropriate power. Namely, for u; =
cj/z € R, as above, we have

u = ﬁ u; = L e (all the operations in R,)
= - P q)-
7j=1

As long as the ¢;’s are small enough to begin with, we still have || []; ¢j|| < ¢, which means that
[[1; ¢jlq = 11, ¢j (operations in R), hence [[[; ¢;j]g belongs to the product coset [[;(¢; +I).

Thus, if each u; is a level-1 encoding of the coset ¢; +Z with short-enough numerator, then
their product is a level-x encoding of the product coset. We note that just like level-1 encoding,
level-x encoding still offers additive homomorphism.

Zero testing: isZero(params, p,, ;) ~ 0/1. Since the encoding is additively homomorphic, we
can test equality between encodings by subtracting them and comparing to zero. To enable zero-
testing, we generate the zero-testing parameter as follows: We draw a “somewhat small” ring
element h < Dzn g, and the zero-testing parameter is set as p,; = [hz"/gl,. To test if a level-x
encoding u = [¢/z"], is an encoding of zero, we just multiply it in R, by p, and check whether
the resulting element w = [py - u], is short (e.g., shorter than ¢*4). Namely, we use the test

) 3/4
1 if ||[paulqll,, <4 (2)

isZero(params, p,, u) = {0 otherwise

To see why this works, note that

hz" c . .
W = Pz U = +— = h-c/g (all the operations in R,).
g =z

If w is an encoding of zero then ¢ is a short vector in Z, which means that it is divisible by g in R.
Hence the element ¢/g € R, is the same as the element c- g~ ! € K, which means that it has size at
most ||c|| - |lg7|| - v/ = ||| - poly(n). This, in turn, implies that ||w| < ||k - ||c]| - poly(n), which
for our choice of parameter is ¢%/2 - ¢1/8 - poly(n) < ilad
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If u is an encoding of a different coset, then ¢ is a short vector in some coset of Z. In this case
we have w = [c - h/g],, where ¢, g are small (and h is “somewhat small”). Intuitively, since h/g
is large whp then for a “random enough” ¢ we expect the size of w to be large. More formally, we
argue below that when choosing a uniformly random coset of Z = (g), there are no short elements
c in that coset such that [c- h/g], is small.

Lemma 3. Let w = [c- h/g], and suppose ||g - w| and ||c- h|| are each at most q/2. Suppose (g)
is a prime ideal. Then, either ¢ or h is in the ideal (g).

Proof. Since g -w = ¢ - hmod ¢, and since ||g - w|| and ||c - h|| are each at most ¢/2, we have
g-w = c- h exactly. We also have an equality of ideals (g) - (w) = (¢) - (h), and, since (g) is
a prime ideal and our cyclotomic ring is a unique factorization domain, we have that (g) divides
either (¢) or (h) (or both). The result follows. O

Lemma 4. Let n,q,0 be as in our parameter setting, suppose ¢ = n“1), and consider drawing
g < Dzn o subject to (g) being prime and h < Dzn_ ;5 not being in (g). Then, there is no € > 0
and ¢ in a nonzero coset of T such that ||c|| < ¢*/® and ||[c- h/g],|| < ¢'~¢.

Proof. This follows directly from Lemma 3, our parameter setting (with ||g|| = poly(n)) and the
fact that in the coefficient embedding ||a-b|| < n-|a]| - ||b]|. O

Extraction: s < ext(params, p,;, us). To extract a “canonical” and “random” representation of
a coset from an encoding u = [¢/z"],, we just multiply by the zero-testing parameter p,, collect
the (logq)/4 — A most-significant bits of each of the n coefficients of the result, and apply a strong
randomness extractor to the collected bits (using the seed from the public parameters). Namely

ext(params, py, u) = EXTRACTs(msbs([u - p,t]q)) (msbs of coefficient representation).

This works because for any two encodings u,u’ of the same coset we have

Ipat = portd'|| = [|pat (e — )| < ¢**,
s0 we expect pu, pyu’ to agree on their (log¢)/4 — X most significant bits. (There is a negligible
(in ) chance that uw and u’ are such that p,u and p,u’ are on opposite sides of a boundary, such
that they have different MSBs.) On the other hand, by Lemma 4, we know that we cannot have
Ipst(u — u')|| < ¢'=¢ when w — v’ encodes something nonzero, and therefore (since A\ < log q/4)
the values p,;u and p,u’ cannot agree on their (logq)/4 — A MSBs.

This means, however, that no two points in the basic cell of Z agree on their collected bits when
multiplied by p,, so the collected bits from an encoding of a random coset have min-entropy at
least log |R/Z|. We can therefore use a strong randomness extractor to extract a nearly uniform
bit-string of length (say) [log |R/Z|| — A.

4.2 Setting the parameters
The parameters for the basic setting above should be set so as to meet the following requirements:

e The basic Gaussian parameter o that we use to draw the ideal generator, g <— Dz », should
satisfy o > 1ny-1(Z"), which means that we have ¢ = v/ An. This means that the size of g is
bounded with overwhelming probability by |g| < ov/n = nv/A.
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e Once we have the ideal lattice Z = (g), the Gaussian parameter ¢’ that we use for sampling
level-zero elements must satisfy o’ > 7,-1(Z), namely we should have o’ > ||g||v/An. Given
the bound from above bound on the size of g, it is sufficient to set ¢’ = An3/2, which means
that the size of level-zero elements is bounded with overwhelming probability by An?.

e It is shown in Section 6.4 that the size of the numerators in y and the x;’s is bounded by on*
whp.

e The Gaussian parameter o* that we use to draw the coeflicient vector r» during re-randomization
of newly generated level-1 encodings, must be large enough so that the resulting distribution
on > rx, “drowns” the initial vector ad/z. Setting o* = 2* is certainly enough for that
purpose. For this value of 0*, a re-randomized level-one encoding is of the form [¢/z], with
the size of ¢ is bounded by ||c|| < 2* - poly(n).

e A level-x encoding is obtained by multiplying « level-one encodings (which will always be
re-randomized). Hence it is of the form [¢/z"], with ¢ of size bounded whp by ||c| < (2*-
poly(n))* = 2%} . nO®) To use Lemma 4 for level-x encodings, we need ||c|| < ¢%/8, so it is
sufficient to set g > 285 . pO),

e To get A-level security against lattice attacks, we roughly need to set the dimension n large
enough so that ¢ < 2", which means that n > O(k\?).

e Finally, to use Theorem 1 we need m to be sufficiently larger than nlog ¢, which we can do
here by setting m = O(n?).

4.3 Variants

Some applications of multi-linear maps require various modifications to the basic encoding scheme
from above, such as “assymetric maps” that have difference source groups. We briefly describe
some of these variants below.

Asymmetric encoding. In this variant we still choose just one ideal generator g, but several
different denominators z; & Ry, j=1,...,7. Then, a vector of the form ¢/z; € R, with c short is
a level-one encoding of the coset ¢ + Z relative to the “j’th dimension”. In this case we use vectors
rather than integers to represent the different levels, where for an index w = (wi,...,w,;) € N7
and a coset ¢/ + Z, the encodings of ¢’ + T relative to the index w are

)
Su T = {C/Z* ced +1, el < g%, z*ZHZ?”}'

To enable encoding in this asymmetric variant, we provide the public parameters y; = [a;/z;], and
{xi; = [bij/zjlq}s for all j =1,2,... K, with short a; € 1 +Z and b; ; € Z. To enable zero-test
relative to index (vi,...,v;) € N7 we provide the zero-test parameter p, = (h-[[I_; 2;")/g € Ry.
(The parameters should be set so as to provide functionality upto ), v; levels.)

Providing zero-test security. In applications that require resilience of the zero test even
against invalid encodings, we augment the zero-test parameter by publishing many elements p,; =
[hiz"/g], for several different h;’s. A level-x encoding must pass the zero-test relative to all the
parameters pyt ;.
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Consider a purported encoding u = ¢/z" where in this case we do not assume necessarily that
le|l < ¢'/® (as would be true for a valid encoding). Applying multiple zero-testers, we obtain

Pu,1u = hic/g, ..., Puiu=hic/g.

This t-dimensional vector lies in a lattice L generated by the vector (hi,...,h;) modulo ¢, Note
that since ||h;|| < ¢ for all ¢, the vector (hi, ..., h:) is quite short modulo g. Moreover, by making
t large enough (but still polynomial), we can ensure that all of the vectors in L whose lengths are
much less than ¢ are unreduced (small) multiples of (hq,...,h;). Therefore, if the encoding passes
the multiple zero-test, ¢/g must be small, and therefore u has the form of an encoding of zero.
(We omit the details in this preliminary report.)

Avoiding Principal Ideals. In our construction above we use a principal ideal Z = (g), where the
norm N(g) = |R/Z| is prime, and both ||g| and ||1/g|| are small. Heuristically, restricting Landau’s
prime ideal theorem [Lan03] to principal ideals with small generators, one could expect that N(g) is
prime (when ||g|| is small) with probability about 1/InN(g), and therefore it is efficient to find an
element g satisfying the primeness requirement. This is indeed the approach Smart and Vercauteren
[SV10] took for key generation in their variation of Gentry’s fully homomorphic encryption scheme
[Gen09]. When g is generated according to a discrete Gaussian with o = poly(n), heuristically the
requirement that ||g~!|| be small will also be satisfied — in particular, ||g~!|| will also be O(poly(n))
except with negligible probability.

However, especially given that some of the attacks in Section 7 rely on the fact that Z is a
principal ideal, it makes sense to seek a scheme that can use also “generic” (non-principal) ideals
according to a nice canonical distribution. Unfortunately, we do not know how to do this, since we
do not know how to generate a general ideal Z according to a nice distribution together with short
vectors (e.g., within poly(n) of the first minima) in each of Z and Z~*.

We note that we can at least adapt the zero-test to general ideals, should the other problems
be resolved. We can replace the single zero-test parameter p,, = [hz"/g|, by n parameters,
Put,i = [hiz" - f;]q, where the vectors f, are “in spirit” just a small basis of the fractional ideal
Z~! (but they are mapped to R, via % € K— z7! € R;). We note that a similar approach also
addresses the (small) possibility that ||g~!|| is not small. Since g=! C R, we can reduce g~* modulo
the integral basis of R to obtain short elements of Z~!, and hence zero-testers that are sufficiently
small.

4.4 Security of Our Constructions

The security of our graded encoding systems relies on new, perhaps unconventional assumptions,
and at present it seems unlikely that they can be reduced to more established assumptions, such
as learning-with-errors (LWE) [Reg05], or even the NTRU hardness assumption [HPS98]. Given
that the construction of multilinear maps has been a central open problem now for over a decade,
we feel that exploring unconventional assumptions for this purpose is well worth the effort, as long
as this exploration is informed by extensive cryptanalysis.

We attempted an extensive cryptanalysis of our scheme, including some new extensions of tools
from the literature that we devised in the course of this work. These attempts are described at
length in Appendices 6 and 7. Here, we provide a brief overview.
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Hardness of the CDH/DDH analogs. In our construction, the attacker sees the public pa-
rameters params = (y, {x;}/*,), where y = [a/z], is a level-1 encoding of 1+Z and each x; = [b;/z],
is a level-1 encoding of 0 + Z. Recall that T = (g) where ||g|| = poly(n) = ¢°@), and a level-i en-
coding of a coset a + Z is an element of the form u = [¢/z'], where ¢ € o + T is short, typically
le|l = ¢°@ (and always ||c|| < ¢'/®). In addition the attacker also sees a zero-testing parameter
at level k of the form p, = [hz"/g], with ||h| = ¢'/?*°(). Consider the following process, on
parameters \,n,q, k,0 = poly(n),o* = o - 2" (as described in Section 4):

1. (y,{xi}i, Paut) < InstGen(1™,1%)

2. Fort=0,...,kK
3. Choose e; < Dzn , and f; < Dzn o // €i, f; in random n; +Z,¢; + T
4. Set u; = [eiy + Zj ri;X;| where 7;; <— Dz o+ // encode only the 7;’s
q
5. Set u* = [[[;{_ ui], // level-x encoding
6. Set v =lep-u*, // encoding of the right product
7. Set v = [f, - u*], // encoding of a random product

Definition 4 (GCDH/GDDH). The (graded) CDH problem (GCDH) is, on input ((y,{Xi}i, Pat)s
U, . .., Uy) to output a level-x encoding of [ |, e;+Z, specifically w € Ry such that ||[px(v—w)]q|| <
¢/*. 2 The graded DDH problem (GDDH) is to distinguish between v and v', or more formally
between the distributions

DGDDH == {(y7 {X’L}’Lv pzt), ug, ..., Uk, 'U} and DRAND = {(y7 {X’L}’L; pzt); ug, ..., Uk, ’UI}.

We begin our cryptanalysis (in Section 6) with a “sanity check”. In particular, we consider
“simplistic” generic attacks that operate on the encodings of params and the problem instance
using only simple operations — add, subtract, multiply, divide. That is, we model attackers as
arithmetic straight-line programs (ASLPs). This model is analogous to the generic group model
[Sho97b], which is often used as a “sanity check” in the analysis of group-based cryptosystems. As
an example in our case, an ASLP can generate the element p,x, which equals hg””‘lb;“ where
b, = b;/g. We want to check that an ASLP cannot generate anything “dangerous”.

We prove that an ASLP cannot solve GCDH. We do this by defining a weight function w
for rational functions, such that everything in the GCDH instance has weight zero, but a GCDH
solution has weight 1. The weight function behaves much like polynomial degree. For example,
the term [a/z], in params has weight 0, since we set w(a) = 1 = w(z). As another example,
w(py) = w(h) + K - w(z) — w(g), which equals 0, since we set w(g) = 1 and w(py) = 1 — k. To
vastly oversimplify the remainder of our analysis, we show that, given terms of weight 0 (as in
the GCDH instance), an ASLP attacker can only produce more terms of weight 0, and thus not a
GCDH solution. (See Lemma 5 for a more accurate statement.)

More realistically, we consider (non-generic) averaging, algebraic and lattice attacks. Section 7
provides an extensive survey of these attacks, many of which arose in the cryptanalysis of NTRU
signature schemes [HKL*00, HPS01, HHGP'03], but a couple of which are new (and will be of
broader interest).

Averaging attacks — described in Sections 7.2 through 7.5 — allow us, after seeing many elements
of the form 7; - a for the same a but many different “random” r;’s, to get a good approximation
of a (or some related quantities from which we can derive a). In our case, one might attempt

2This formulation allows the adversary to output even an invalid encoding, as long as it passes the equality check.
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to mount such an averaging attack on the (possibly many) encodings of 0 {x; = blg/z} that we
provide in params. Fortunately, Gentry, Peikert and Vaikuntanathan [GPVO08] already provide a
countermeasure to this attack and similar “transcript” attacks. One of the key conceptual insights
of [GPVO08] is that a signer with any good basis B of a lattice L (e.g., a lattice where ||B]| is less
than some bound ) can generate signatures according to a canonical Gaussian distribution (with
deviation tightly related to ). Thus, the signatures do not reveal anything about the signer’s
particular basis B aside from an upper bound on [|B]|. Our encoding systems (Section 4) use a
similar approach, where we derive all the elements in the public parameters from a small set of
elements, using a GPV-type procedure.

Not surprisingly, our constructions can be broken using a very good lattice reduction oracle
(e.g., one that approximates SVP to within polynomial factors). For example, one attack begins
with the fact (shown in Section 6.3.3) that an attacker can efficiently compute the coset e; +Z used
by any of the GDH participants. However, to convert this knowledge into a direct attack on GCDH
— that is, to put himself into the position of one of the legitimate players — the attacker must find
a short representative e of the coset e; + Z. It can do this with a good lattice reduction oracle, or
with any short-enough element of Z, but it is unclear how such an attack could be implemented
efficiently.

Our new algebraic/lattice attacks are extensions of an algorithm by Gentry and Szydlo [GS02],
which combines lattice reduction and Fermat’s Little Theorem in a clever way to solve a relative
norm equation in a cyclotomic field. Our new attacks include a dimension-halving attack on princi-
pal ideal lattices (Section 7.8.1), demonstrating that one needs to double the dimension of principal
ideal lattices (compared to general ideal lattices) to preserve security. Principal ideal lattices cer-
tainly arise in our scheme — in particular, it is straightforward from our params to generate a bases
of principal ideals such as Z = (g) — and therefore we need to set our parameters to be resilient
to this new attack. Also, in Section 7.6, we provide a polynomial-time algorithm to solve the
closest principal ideal generator problem in certain cases. Specifically, we can recover a generator
of a principal ideal Z = (g) from a basis of Z and an e-approximation of the generator g, when
¢ < p~Soglogn) (slightly inverse quasi-polynomial). The latter attack emphasizes even more the
necessity of preventing averaging attacks that could obtain such useful approximations. Undoubt-
edly there is a lot of meat here for cryptanalysts. But the bottom line is that we have extended
the best known attacks and still not found an attack that is threatening to our constructions.

Easiness of other problems. In light of the apparent hardness of our CDH/DDH analog, we
could optimistically hope to get also the analog of other hardness assumptions in bilinear maps,
such as decision-linear, subgroup membership, etc. Unfortunately, these problems turn out to be
easy in our setting, at least with the simple encoding methods from above.

To see why, observe that publishing level-1 encodings of 0 and 1 enables some “weak discrete
log” computation at any level strictly smaller than . Specifically, consider one particular encoding
of zero x; = [b;/z], (where b; = ¢;g for some ¢;), which is given in the public parameters together
with an encoding of one y = [a/z], and the zero-testing parameter p,; = [hz"/g],. Given a level-i
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encoding with 1 < i < k, u = [d/z'];, we can multiply it by X;, p,, and some power of y to get

e d cj-g hzt a* !
f = [ux puy™ l]q I ]z ’ g L gr—i—1
q
= d-cj-h-a""!' =d-¢cj-h (modI).
. . ,
<q Aj

We stress that the right-hand-side of the equality above is not reduced modulo q. This means
that from a level-i encoding u of an element d 4 Z, we can get a “plaintext version” of d - A; from
some fixed A; (that depends only on the public parameters but not on ). This “plaintext version”
is not small enough to be a valid level-zero encoding (because A; is roughly the size of h, so in
particular A; > ,/q). Nonetheless, we can still use it in attacks.

For starters, we can apply the above procedure to many of the level-one encodings of zero from
the public parameters, thereby getting many elements in the ideal Z itself. This by itself still does
not yield a basis of Z (since all these elements have the extra factor of h), but in Section 6.3.1we
show how to remove this extra factor and nonetheless compute a basis for Z. This is not a small
basis of course, but it tells us that we cannot hope to hide the plaintext space R/Z itself.

Next, consider the subgroup membership setting, where we have g = g; - g2, we are given a
level-1 encoding u = [d/z], and need to decide if d € (g;). Using the procedure above we can get
f = d-Aj, which belongs to the ideal (g1) if d does. Taking the GCD of the ideals (f) and 7
will then give us the factor (g;) with high probability. It follows that the subgroup membership
problem is easy for the encoding method above.

Finally, consider getting a matrix of elements A = (a; ;) ;, all encoded at some level i < k.
Using the method above we can get a “plaintext version” of A;- M, which has the same rank as A.
Since the decision linear problem is essentially a matrix rank problem, this means that this problem
too is easy for this encoding method.

At this point it is worth stressing again that these attacks do not seem to apply to the GDDH
problem, specifically because in that problem we need to make a decision about a level-x encoding,
and the “weak discrete log” procedure from above only applies to encoding at levels strictly be-
low k. The attacks above make it clear that providing encodings of zero in the public parameters
(in conjunction with the zero-testing parameter) gives significant power to the adversary. One
interesting direction to counter these attacks is to find different randomization tools that can be
applied even when we do not have these encodings of zero in the public parameters.

5 One-Round N-way Diffie-Hellman Key Exchange

Joux [Jou00] constructed the first one-round 3-way secret key exchange protocol using Weil and
Tate pairings. Boneh and Silverberg [BS03] showed how this result could be extended to get a
one-round N-way secret key exchange protocol if multi-linear maps existed. Our encoding schemes
easily support the Boneh-Silverberg construction, with one subtle difference: Since our public
parameters hide some secrets (i.e., the elements g, h,z) then we get a one-round N-way secret key
exchange protocol in the common reference string model.
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5.1 Definitions

Consider a setting with N parties who wish to set up a shared key using a one-round protocol.
The “one-round” refers to the setting in which each party is only allowed to broadcast one value
to all other parties. Furthermore all N broadcasts occur simultaneously. Once all the N parties
broadcast their values, each party should be able to locally compute a global shared secret s. Using
the notation from [BS03], a one-round N-way key exchange scheme consists of the following three
randomized PPT algorithms:

e Setup(\, N): Takes a security parameter A € Z* and the number of participants N. It runs
in polynomial time in A\, N and outputs public parameters params.

e Publish(params,i): Given an input i € {1,..., N}, the algorithm outputs a pair (pub;, priv;),
with both in {0, 1}*. Party ¢ broadcasts pub; to all other parties, and keeps priv; secret.

o KeyGen(params, j, privj, {pub; }i+;): Party j € {1,... N} collects the public broadcasts sent
by all other parties and executes KeyGen on all these public values and its secret value priv.
On this execution the algorithm KeyGen outputs a key s;.

The consistency requirement for the above scheme is that all N parties generate the same
shared key whp. The scheme is secure if no polynomial time algorithm, given all N public values
(puby, ...puby), can distinguish the true shared key s from random.

5.2 Our Construction.

We present a one-round N-way key exchange protocol using an encoding schemes with k = (N —1),
under the GDDH assumption. The construction is a straightforward adaptation of [BS03]:

Setup(1*,1%). We just run the InstGen algorithm of the underlying encoding scheme, getting
(params, p,;) < InstGen(1*,1¥71), and output (params,p,) as the public parameter. Note
that p, is a level-N — 1 zero-test parameter. Let ¢,n,oc be the corresponding parameters
of the encoding scheme. Note also that in this construction we insist that the order of the
quotient ring R/Z be a large prime (or at least that it does not have any small divisors).

Publish(params, p,,i). Each party ¢ chooses a random level-zero encoding d <— samp(params) as a
secret key, and publishes the corresponding level-one public key w; < enc(params, 1, d).

KeyGen(params, p,, j, d;, {w; }i+;). Each party j multiplies its secret key d; by the public keys of all
its peers, v; < d; -H#j w;, thus getting a level-N —1 encoding of the product coset [ [, d; +Z.
Then the party uses the extraction routine to compute the key, s; <— ext(params, p,;, v;). (In
out case extraction consists of multiplying by the zero-test parameter and outputting the
high-order bits.)

The consistency requirement follows directly from the agreement property of the extraction
procedure in the underlying encoding scheme: Notice that all the parties get valid encodings of the
same uniformly-chosen coset, hence the extraction property implies that they should extract the
same key whp.

Similarly, security follows directly from a combination of the GDDH assumption and the ran-
domness property of the extraction property of the extraction procedure in the underlying encoding
scheme.
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Theorem 2. The protocol described above is a one-round N-way Diffie-Hellman Key Ezxchange
protocol if the GDDH assumption holds for the underlying encoding scheme.

Proof. We need to show that an attacker that sees all the public keys cannot distinguish the
output of the first party (say) from a uniformly random string. By GDDH, the adversary cannot
distinguish between the level-(N — 1) encoding vy < dj - [[,o; w; that Party 1 compute and an
element v} < dj - [[,.; w; that is obtained for a random and independent d; < samp(params)
(which is a level-N — 1 encoding of the coset (d - [[;-, di) + ).

By the randomness property of the sampling procedure, d) is nearly uniformly distributed
among the cosets of Z. Since |R/Z| is a large prime then whp [[;.;d; # 0 (mod 7), and thus
d) - [I;>1d: is also nearly uniformly distributed among the cosets of Z. We can now use the
randomness property of the extraction function to conclude that ext(params, p,:, v)) is a nearly
uniform string, completing the proof. O

6 Cryptanalysis

In this section we describe our attempts at cryptanalysis of our encoding schemes, and propose
plausible countermeasures against the more “promising” lines of possible attacks. Despite signif-
icant effort, we do not have a polynomial-time attack even against a simplistic scheme that does
not use any of these countermeasures. But the best (heuristic) attacks that we have come very
close, they may be able to break the simplistic scheme in slightly super-polynomial n@U0g10g87) time.
We stress, however, that we do not have such attacks against the “main scheme” as described in
Section 4.1.

In this section we first “cover the basics,” arguing that simplistic attacks that only compute
rational functions in the system parameters cannot recover any “interesting quantities”, and in
particular cannot break our DDH analog. (This is somewhat analogous to generic-group-model
analysis for pairing groups.) Then we move to more sophisticated settings, identifying seemingly
useful quantities that can be computed from the public parameters, and other quantities that if we
could compute them then we could break the scheme. We describe averaging and lattice-reduction
attacks that can perhaps be useful in recovering some of these “interesting targets,” and propose
countermeasures to render these attacks less dangerous.

A survey of the cryptanalysis tools that we use (including some new tools that we developed in
the course of this work) can be found in Section 7.

6.1 Cryptanalytic Landscape for Our Constructions

In our constructions, the attacker sees the public parameters params = (y, {x;};), where y = [a/z],
is a level-1 encoding of 1 + Z and each x; = [b;/z], is a level-1 encoding of 0 + Z. Recall that
T = (g) where ||g|| = poly(n) = ¢°V, and a level-i encoding of a coset o + T is an element of
the form u = [c/z'], where ¢ € a + T is short, typically ||c|| = ¢°) (and always ||c|| < ¢/®). In
addition the attacker also sees a zero-testing parameter at level x of the form p, = [hz"/g], with
|h|| = ¢*/#t°(D) . Expressing the abstract GDDH assumption from Section 2 in terms of our specific
construction, we get the following computational assumptions (below we state both the search and

the decision versions). Consider the following process, on parameters A, n,q,k,o = poly(n),c* =
o - 2* (as described in Section 4):
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L. (y7 {xi}i7 pzt) — InStGen(lna 15)
2. Fort=0,...,kK
3. Choose €; < Dzn , and f; < Dzn » // random n; +Z,¢; + T
4. Set u; [eiy + Zj rijX;| where 7;; <— Dz o~ // encode only the «;’s
q
5. Set u* = [[[;{_; ui], // level-x encoding
6. Set v =[ep-u*, // encoding of the right product
7. Set v = [f, - u*], // encoding of a random product

Definition 5 (GCDH/GDDH). The graded CDH problem (GCDH) is, on input ((y,{Xi}i, Pat)s
U, . .., u) to output a level-x encoding of | [, e;+Z, specifically w € Ry such that ||[px(v—w)]q|| <
¢*/*. 3 The graded DDH problem (GDDH) is to distinguish between v and v', or more formally
between the distributions

DGDDH = {(Y7 {Xi}ia pzt)7 ug, - - ., Uk, U} and DRAND = {(y7 {Xi}ia pZt)a uo, - - ., Uk, U/}'

6.2 Simplistic Models of Attacks

We begin our cryptanalysis effort by considering “simplistic” generic attacks. Roughly, these are
attacks in which we just take the terms the public parameters, add, subtract, multiply, and divide
them, and hope to get something useful out of it. In other words, we consider arithmetic straight-line
programs (ASLP) over the ring R, as our model of attack.

We argue that such simplistic attacks are inherently incapable of solving GCDH. To that end
we consider the different terms from the public parameters as formal variables, and show that all
of the rational functions that the attacker can derive have a special form. Then we argue that
any term of this form that expresses a solution to GCDH must refer to polynomials of size larger
than ¢, hence it cannot be a correct solution.

Before presenting this analysis, we remark that a slightly less simplistic attack model is the
black-box field (BBF) model of Boneh and Lipton [BL96]. In that model, the attacker can still
compute terms that are rational functions in the given parameters, but now it can also test whether
two terms are equal (and in our case perhaps also see the results of applying the zero test on two
terms). Although we do not have any bounds on the security of our scheme in this model, we note
that Boneh and Lipton’s generic BBF algorithm for solving discrete log does not extend to our
setting to solve our “discrete log” problem. The reason is that their algorithm requires black-box
exponentiations of high (exponential) degree, whereas our encodings only permit the evaluation of
polynomially-bounded degree, after which the “noise” in our encodings overwhelms the signal.

6.2.1 Hardness of GCDH in the Arithmetic Straight-Line Program Model

Our ASLP analysis resembles potential-function analysis to some extent: We assign some weight
to terms from the public parameters and the GCDH instance that the attacker gets as input (and
think of this weight as our “potential”). We then characterize the weight of the terms that the
attacker can compute using an ASLP on these input terms, and argue that terms of this weight are
not useful for solving GCDH.

First, we establish some terminology. Recall that a rational function is a ratio of two (mul-
tivariate) polynomials, and that the set of rational functions in some variables is closed under

3This formulation allows the adversary to output even an invalid encoding, as long as it passes the equality check.
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addition, subtraction, multiplication and division. We denote the rational functions over the set of
variables V over a ring R by Rr(V).

Definition 6 (Weight of Variables and Rational Functions). Consider a set of variables V =
{x1,..., @} over some ring R, and a weight function on these variables w : V' — Z. This weight
function is inductively extended rational functions in these variables over R, w* : Rr(V) — Z as
follows:

e For any constant ¢ € R, w*(c) =0, and for any variable x € V w*(x) = w(x);

o Va € Rr(V), w*(—a) =w*(a) and if a # 0 then w*(1/a) = —w*(a);

e Va,b e Rr(V), s.t. a+b is not equivalent to any simpler function, w*(a+b) = max{w*(a), w*(b)}.
e Va,b e Rr(V), s.t. ab is not equivalent to any simpler function, w*(ab) = w*(a) + w*(b).

Using the fundamental theorem of algebra, it can be shown that this extension w* is well defined
over the ring of integers in any number field. One example of such a weight function is the degree,
w(z) =1 for all x € V. Below we identify w* with w and denote both by w(-).

Definition 7 (Homogeneous Weight-Balanced Rational Function). We say that a rational function
r(xy,...,x¢) =p(x1,...,xe)/q(x1,. .., %) 15 weight-homogeneous if p and q are both homogeneous
in the sense that all of their monomials have the same weight. We say that r is (homogeneous)
weight-balanced for weight function w(-) if it is weight-homogeneous and has weight zero.

We use the following easy fact:

Fact 1. Let ri(x1,...,2) and ro(x1,...,2) be balanced rational functions for weight function
w(-). Then —ry, 1/r1, r1 + 12 and r1 - ro are all balanced rational functions for weight function

w(-).

Using the above definitions, our basic strategy will be to treat the relevant elements in out
scheme as formal variables and assign a weight to them such that all the terms that the adversary
sees are weight-balanced rational functions. Fact 1 then implies that the terms that an ASLP
attacker can produce must also be weight-balanced rational function. In addition every element
is also assigned a size (lower-bounding the expected size of that element in the actual scheme).
The main lemma in our analysis asserts that any element obtained as weight-balanced rational
function, which is equivalent to [];_ e;/z" (mod Z), must have numerator of size more than ,/g.
This means that when multiplied by the zero-testing parameter we get reduction modulo ¢, hence
such term will not pass the equality test.

Size of terms. Below we use the following rules for the evolution of the size: If a, b are an elements
of size sz(a), sz(b), respectively, then we have sz(—a) = sz(a), sz(1/a) = ¢, sz(a + b) = sz(a) + sz(b)
and sz(ab) = sz(a) - sz(b). (The convention of sz(1/a) = ¢ captures the intuition that the inverse of
a small R, element has size roughly ¢.)

22



Weight and size of elements in our scheme. Recall that a GCDH attacker gets as input the
terms a/z, {b;/z}]",, hz" /g, and {e;/z}}_, (all in Ry), where we have T = (g), b; € T for all i
anda—1¢eZ.

To ensure that all the terms that the attacker gets are weight-balanced rational functions, we
set w(z) = w(g) = w(a) = 1 and also w(b;) =1 for all ¢ and w(e;) =1 for all j. Finally, to make
the zero-test parameter weight-balanced we set w(h) = 1 — k. We note that h is the only element
that has negative weight. (If we wish to consider the decomposition b; = r;g, then w(r;) = 0, and
similarly if we decompose a = rg + 1 then w(r) = 0.)

For our analysis below, it is sufficient to assign size 1 to all the “small” elements, size just over
V/q to the mid-size element h, and size ¢ to the random element z. Namely we have sz(z) = g,
sz(g) = sz(a) = 1, sz(b;) = 1 for all i, sz(e;) = 1 for all j and sz(h) = ,/q.

Lemma 5. Consider the GODH instance I' = (a/z,{b;/z}]",, hz" /g,{e;/z}}_;) with weights
and sizes as above. Assume that q is a prime. Let A be an arithmetic straight-line program. If
AT) = ¢/z* such that [¢], = [[—oe; (mod Z) then sz([c]y) > /3.

Proof. By Fact 1 and the weights of elements in I'; A can produce only weight-balanced rational
functions of the variables. Since w(z) = 1, this implies w(c) is k. Going forward, the intuition
is since H;ZO e; has weight « + 1, the only way to get c to have the correct weight is to make it
divisible by h, since it is the only variable with negative weight. But this makes the size of c at
least /q.

Formally we prove below that any homogeneous rational function d that satisfies d = ¢ (mod q)
and d = [[;_je; (mod Z) much have size at least /g, so in particular this must hold for [c],.

Since ¢ and d are homogeneous and d = ¢ (mod ¢), there exist two homogeneous rational func-
tions s, s’ such that ¢ = sd + s’ with s =1 (mod ¢) and ' =0 (mod ¢). Since ¢ is homogeneous,
w(e) = w(s) + w(d) = w(s').

Similarly since d = [[j_ye; (mod Z) then we must have d = r [[_, e; + r’ for homogeneous
rational functions r, 7’ that satisfy » = 1 (mod Z) and ' =0 (mod Z), and again we have

w(d) =w(r)+r+ 1.

Putting the two inequalities together, we thus have w(d) = w(s) + w(r) + k + 1. At the same
time, by Fact 1 we know that A can only produce weight-balanced rational terms, so w(e/z") = 0.
Therefore w(c) = w(z") = k, which implies that w(s) + w(r) = —1.

Considering the size of d, we first note that if d = p/p’ for a nontrivial denominator p’ then
sz(d) > q and there is nothing more to prove. Below we therefore assume that the denominator
p' is trivial, i.e. d is a simple polynomial. Since d = r[[j_je; + ', then also ' is a simple
polynomial and the only terms that we can have in the denominator of r are the e;’s. But we know
that r =1 (mod Z) so the same e;’s must be in its numerator, making  too a simple polynomial.
We conclude that r, 7" must both be simple polynomials, and sz(d) = sz(r) - sz([[, e;) + sz(r').

Returning to the weight, we now have two cases to analyze: either w(s) < 0 or w(r) < 0. If
w(r) < 0, then since the only variable with non-positive weight in our scheme is h, it must be that
h divides r. Hence we get sz(d) > sz(c) > sz(r) > sz(h) > \/q.

Considering the other case w(s) < 0, we note s = 1 (mod ¢) but none of the terms in our
system are equivalent to 1 modulo ¢q. The only way to get a homogeneous rational function s =1
(mod gq) is if w(s) is divisible by ¢ — 1. Since the weight of s is negative and divisible by ¢ — 1, then
in particular we have w(s) < —g + 1. Therefore, w(r) > g — 2. For I, weights, and sizes as defined
above, clearly sz(r), and hence sz(d), exceeds ,/q. O
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6.3 Cryptanalysis Beyond the Generic Models

Below we attempt “real cryptanalysis” of our scheme, using state of the art tools in algebraic
cryptanalysis and lattice reduction. Throughout this section we consider in particular the GDDH
assumption, hence we assume that the attacker is given the following inputs, all relative to the
random element z € R, and the ideal Z = (g) C R, with ||g|| < o'y/n.

e y = [a/z],, a level-one encoding of 1, namely a € 1 + 7 and ||a|| < oy/n.

e x; = [b;/z];, m randomizing terms s.t. Vi, b, € Z and |b;|| < oy/n. Below it will be
convenient to denote b; = b/, - g, where b/ is of size similar to b;.

e pu = [hz"/g|, the zero-test parameter with Va < ||h|| < /qn;
e u; = [ej/z],, -+ 1 level-one encodings of random elements where V7, |le;| < 2*o\/n;

e w = [c/z*],, the “challenge element” with allegedly ||c|| < ¢'/® and ¢ = [Tj—oei (mod I).

Our parameter setting is n = O(kA?) and ¢ ~ 2**. In the analysis below we consider as a
“real break” any method that has a heuristically significant chance of distinguishing the challenge
w from a level-x encoding of a random element different from [[; e;.

6.3.1 Easily computable quantities

Using only algebraic transformations (with no need for lattice reduction), it is easy to compute
from the given parameters also the following quantities:

e Taking different k-products including some number r > 1 of the x;’s, some number s > 0 of
the u;’s and some power of y, and multiplying these products by the zero-test parameter p,
we get many different elements of the form

v = [(H Xik) . <H ujk) . ynfr—s . pzt] — (H b/zk> ,gT*I X <H ejk> a5 R (3)
=t h=1 q k=1 k=1

Importantly, the right-hand-side in Equation (3) is not reduced modulo q, because it is a
product of the mid-size h by exactly x short elements, hence its size is smaller than q.

e All the v’s of the form of Equation (3) have a common factor h, but if we choose the other
elements at random then whp they will have no other common factors. Hence after seeing
enough of them we can expect to get a basis for the principal ideal lattice (h).

A similar argument implies that we can also compute bases for the principal ideals (h - e;)
for every j € {0,1,...,k} and also bases for (h-g) and (h - a).

e Given a basis for (h), we can get a basis for the fractional principal ideal (1/h) (where 1/h
is the inverse of h in the number field K = Q[X]/F(X)).

e Using the bases for (h - g) and (1/h), we can compute a basis for our principal ideal Z = (g).
Similarly we can also compute a basis for (a) and bases for all the principal ideals (e;).
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The above tells us that we cannot expect to hide the ideal Z itself, or the ideals generated by
any of the other important elements in our scheme. It may still be hard, however, to find the short
generators for these ideals, or any short elements in them. Indeed this difficulty is the sole reason
for the conjectured security of our schemes.

6.3.2 Using averaging attacks

Averaging attacks are described in Sections 7.2 through 7.5, roughly speaking they allow us, after
seeing many elements of the form r; - a for the same a but many different “random” r;’s (e.g., that
are independent of a), to get a good approximation of a (or some related quantities from which we
can derive a).

In our case, if we use simplistic Gaussian distributions to choose all our public parameters,
then we expect to be able to apply these tools with elements from Equation (3), in order to get
approximations for h or h-g" for various r’s. The tools from the literature do not quite work “right
out of the box” because the terms that we want to recover are not very short. Specifically they
have size more than /g, so techniques from the literature may need to average super-polynomial
(or even exponential) number of samples to get useful approximations.

In Section 7.6, however, we describe a new method that can recover elements such as h or h-g"
from approximations that are not very accurate. The level of accuracy needed to apply Theorem 6
still requires super-polynomial number of samples, but only just: It is heuristically enough to use
only n@Uoglogn) samples. Indeed this potential attack is the reason for the slightly involved method
of choosing the randomizers in Section 4.1, which is based on the countermeasures discussed in
Section 6.4 below.

We mention that another potential problem is that our public parameters only include a small
number of terms, whereas averaging attacks typically need a much larger number of samples.
However, the attacker can get many more samples by taking sums and products of terms from the
public parameters, and it seems likely that such samples will be “independent enough” to serve in
the averaging attacks.

Below we show how recovering (small multiples of) the terms g or 1/h, can be used to break
our scheme, and also a plausible method of using a small multiple of h - g™ for a large value of r.
We remark that for the cases of having a small multiple of g or 1/h we can show a real working
attack, but for the case of having a small multiple of h - g" we only have a “somewhat plausible
approach” that does not seem to lead to a real attack.

6.3.3 Cryptanalysis with extra help

A short element in (g). We begin by showing that knowing any short element in the ideal
7 = (g) would enable the attacker to break our scheme. Any short element in Z has the form d - g
for a short d (because 1/g € K is short). We begin the attack by multiplying in R, the short d - g
by the zero-test parameter p,;, thus getting the modified zero-test parameter p,, = [d - h - z"],.
Then we multiply the modified zero-test parameter by both the “challenge element” w and by the
product of x of the random encodings u;.

In the case where w is indeed an encoding of the right product, we would have w = (cg +
[Tj-o€i)/z" for some not-too-big ¢ (ie., [c[| < ¢'/8). Hence in this case we would get the two
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elements

K K
v = [p,, -wl, = d-h- c-g—l—Hej and vy = plzt‘Huj :d-h-Hej.
j=0 j=1 q J=1

Our next goal is to “divide v1 by vo modulo Z” in order to isolate the element ey. For that purpose,
we use our knowledge of a basis of Z and compute the Hermite normal form (HNF) of that lattice.
Recall that the HNF basis has the form of a upper-triangular matrix, and with good probability
the first entry on the main diagonal is the norm of Z and all the other entries are 1. Below we
assume that this is indeed the case, and denote the norm of Z by N(Z).

We can reduce both v1 and v9 modulo the HNF basis of Z, and if the basis has the above special
form then we get two integers v1 = [v1]unr(z) € Z and v1 = [v1]unr(z) € Z. Clearly we have

vy = v = th e; (modZ), and 1y =vy= th e; (mod7Z)
j=0 j=1

Assuming that vy is co-prime to N(Z), we can now compute over the integers = v1-v, ' mod N ().
Observing that we always have N(Z) € Z, we therefore get (for some 7 € Z)

n-ve=v1+7-N(Z)=v1 (modZ).
At the same time we also have
ey-va=ey-va=v1=v; (modZ).

Since pg is co-prime with N(Z) then it is also co-prime with the ideal generator g, and hence the
two equalities above imply that n = ey (mod Z).

Finally, we can reduce 7 modulo the rotation basis of d - g, which is a basis consisting of only
short vectors (because d - g itself is short). This yields a short element ey =n+t-dg =17 = e
(mod Z). We observe that the short ef, is functionally equivalent to the secret key e which was
encoded in ug. (At least, it is functionally equivalent when d - g is short enough; if it is not short
enough, the attack may fail.)

In particular we can use it to verify that the challenge element is indeed an encoding of the
right product: we just multiply uj = e, - y to get a level-one encoding, then check that up — wuy,
is a level-one encoding of zero. (Or course this test will fail in the random case, since the element
that we recover will be in the coset of f; not in the coset of eg.)

A small multiple of 1/h. Recall that we can compute from the public parameters a basis for
the fractional ideal (1/h). If we could find a “somewhat short” element in that lattice, namely an
element v = d/h with ||d|| < /g, then we can mount the following simple attack:

Multiplying the zero-test parameter by v, we get the “higher-quality” zero-test parameter p,, =
[Pzt - v]q = [dz"/g]. Once we have this higher-quality parameter, we can square it and multiply by
one of the randomizers to get

p/z/t = [(p/zt)QXO]q = [d2zzn/g2 : bf)g]q = [deﬁz%/g]Q’
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If ||d| is sufficiently short so that ||d?bj|| < ¢, then we can use pl, as a zero-test parameter at
level 2k. In particular we can distinguish whether the challenge element is an encoding of the right
product or a random product by computing the level-(k + 1) encoding of the product H;”:O u;,
mapping w to level x4+ 1 by multiplying with y, then use the level-2x zero-test parameter p.), to

check if these two elements are indeed in the same coset.

A small multiple of hg”. If we could compute an element hg" (for a large value of r) or a not-
too-big multiple of it, say v = dhg" such that ||v| < g, then the following line of attack becomes
plausible.

Extracting the r’th root of v we get v/ = V/dh - g. We note that when dh is “random and
independent of g””, then v/dh (over the number-field K) tends to a (known) constant as r increases.*
We can therefore hope that for a large enough value of r the fractional element /v will provide
a good enough approximation of g, and then we could perhaps use an algorithm such as the one
from Section 7.6 to recover g exactly.

It seems, however, that this line of attack as described does not work in our case. The reason
is that we cannot hope to get approximations of hg” for r > k — 1, and our dimension n is always
much larger than , so this method inherently cannot produce good enough approximations. Still
perhaps it can be used in conjunction with other tools.

6.4 Some Countermeasures

As explained above, the most potent attacks that we found against our scheme make use of averaging
attacks, using samples that we get by multiplying the zero-test parameter by products of k other
elements from the public parameters. (See Section 7.2 and 7.4 for details on averaging attacks,
and a discussion of how devastating they are.) We note that for the purpose of defending against
averaging attacks we can ignore the GDDH instance, since it can be generated by the attacker itself
just from the public parameters. (At least as long as the averaging part does not use the challenge
element w.)

Fortunately, Gentry, Peikert and Vaikuntanathan (GPV) [GPVO08] have already given us an
approach to defeat this sort of averaging attack. One of the key conceptual insights of [GPVO0S]
is that a signer with any good basis B of a lattice L (e.g., a lattice where || B|| is less than some
bound () can generate signatures according to a canonical Gaussian distribution (with deviation
tightly related to ). Thus, the signatures do not reveal anything about the signer’s particular
basis B aside from an upper bound on ||B||. We will use a similar approach, where we derive all
the elements in the public parameters from a small set of elements, using a GPV-type procedure.

Specifically, we give out (potentially many) encodings of 0 {x} = b’-g/z}. Let us ignore, for the
moment, the fact that these encodings live in R,, and instead pretend that we present them to the
attacker as elements b}g/z in the overlying cyclotomic field. (Of course, we are giving the attacker
an additional advantage here.) Then, all of the encodings are in the fractional principal ideal lattice
J = (g/z). If we simply chose the b/ values randomly and independently, it is conceivable that an
averaging /transcript attack could recover g/z. However, we instead follow [GPV08] by generating
the encodings {b;} according to a Gaussian distribution over the fractional ideal lattice, using an
efficient discrete Gaussian sampler [GPV08, Peil0, DN12a]. By the same argument as [GPV08],

*An easy example: If U €g [0, B] then Pr[{ > % B] = 0.1. However if U €g [0, B'®] then Pr[ 'Vl > 2 B] ~ 1.
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such encodings (presented in characteristic zero) reveal nothing in particular about the term g/z
that is being used to generate the encodings. (We omit a formal proof.)

More concretely, one can show that with probability 1 — o(1) over the choice of z we we have
II1/z]| < n/q, so in our instance generation we re-choose z until this condition is met. Similarly
when choosing g < Dz , we get ||1/g|| < n/o with probability 1 — o(1), so here too we re-choose
g until this condition is met. When the first condition is met, then we have ||g/z| < on'®/q, so
we can use the GPV procedure to sample elements from J according to the Gaussian distribution
x} < D7 ¢ with parameter s = on?/q (say).

We note that the elements that we draw are of the form x, = b’ - g/z for some (integral) " € R.

Moreover we can bound the size of the b!’s by ||bl|| = ||x}|| - ||z] - ||1/g]| < (¢n*/q)-q-n/o = n>>.
Next we map these elements to R, by setting x; = [b}g/z],. Denoting the denominator by
b; = blg, we can bound its size by ||b;|| = b - |lg|| < n5 - oy/n = on®. Sampled this way, we

know that the randomizers x; do not provide any more power to the attacker beyond the ability to
sample elements from J according to D ;. 5

We set h in a similar way. Again, we use [GPV08] to prevent the attacker analyzing the zero-
tester h- 2" /g geometrically to extract useful information about h, or the other terms, individually.
Roughly, once g and z are chosen, one chooses h according to an ellipsoid Gaussian of the same
“shape” as g/z", so that the distribution of the zero-tester is a spherical Gaussian.

Although we prefer to use the GPV-type approach above, we note for completeness that another
plausible line of defense against averaging attacks is to actually decrease the number of elements
made public, perhaps as few as only two. Namely we can publish only two elements x; = [bg/z],
and xo = [b4g/z],, perhaps chosen according to the procedure above conditioned on b}, b/, being
co-prime. To re-randomize a level-one encoding u, we can then choose two small elements a1, as
and set v’ = u + a1 - x1 + as - xo. One drawback of this method is that we can no longer use
Theorem 1 to argue that the output distribution of reRand is nearly independent of its input,
instead we need to use yet another computational assumption (and a rather awkward one at that).
Another drawback is that it is not at all clear that the attacker cannot just take many terms of
the form a; - x1 + a2 - x2 (for many random pairs (a1, as)) to use for the samples of the averaging
attacks.

7 Survey of Lattice Cryptanalysis

Here we provide a survey of relevant cryptanalysis techniques from the literature, and also provide
two new attacks that we developed in the course of this work. Our new attacks are extensions
of techniques that were developed in [GS02] for attacking NTRU signatures: In Section 7.8.1 we
describe a “dimension-halving attack” on principal ideal lattices, demonstrating that one needs to
double the dimension of principal ideal lattices (compared to general ideal lattices) to preserve se-
curity. Then in Section 7.6 we provide a polynomial-time algorithm that solves the closest principal
ideal generator problem in certain cases. Specifically, it can recover a generator of a principal ideal
Z = (g) from a basis of Z and an e-approximation of the generator g, for small enough € — namely,

e < n—Q(log logn)

SWe expect it be even slightly less powerful, since these samples are mapped into R, before the attacker sees them.
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7.1 The Geometry of Number Fields

We provide some background on ideal lattices and cyclotomic fields that will prove useful when we
begin describing attacks. Much of our description here follows [LPR10].

An algebraic integer ¢ € C is a root of a monic irreducible polynomial f(x) € Z[x], called (’s
minimal polynomial. Let n be the degree of f(x). The conjugates of ¢ are the n roots of f(x).

A number field is a field extension K = Q({) obtained by adjoining an algebraic integer ¢ to Q.
There are exactly n field homomorphisms (embeddings) o; : K — C that fix Q, given by mapping
¢ to its conjugates. When o;(¢) € R, we say o; is a real embedding; otherwise, it is complex. Since
the roots of f(z) in C\ R come in conjugate pairs, so do the complex embeddings. The signature
of K is (s1,$2), where s1 is the number of real embeddings and 2s2 is the number of complex
embeddings; we have n = s1 + 2s2. By convention, we order the embeddings so that {o; }je[Sl] are
the real ones, and 0, 15,4 = 05,4, for j € [sa].

The canonical embedding o : K — R*' x C?%2 is defined as

o(a) = (o1(a),...,on(a)).

It is a field homomorphism from K to R*! x C?%2, where multiplication and addition in Rt x C?%2
are component-wise: we write o(ab) = o(a)o(b). Due to the pairing of the complex embeddings,
o maps into the following space H C R®1 x C?%2 C C™:

H={(x1,...,2,) € R* x C?s2 . Ty 4sotj = Ts1t4, VJ € [s2]}.

The space H is isomorphic to R™ as an inner product space. As in [LPR10], one can show this

explicitly by defining an orthonormal basis {Z}ie[n] of H. For two vectors @, v € H, we use the
Hermitian inner product <7, 7) = > u;U;, which has the usual properties of a bilinear form and
is positive definite — i.e., <7, 7> is a real non-negative number. Moreover, for any 7,7 € H,
their Hermitian inner product is a real number — in particular, it is the same real number that
one obtains when one instead interprets 7, o as vectors in R" corresponding to their associated
R-linear combinations of the {h; };c|,) basis and we compute (W, ) in usual way.

There is also a coefficient embedding 7 : K — Q™. In particular, since f(¢) = 0, there is an
isomorphism between Q[z] modulo f(x) and K given by x — (. So, K can be represented as a
n-dimensional vector space over Q using the power basis {1,(,...,(" 1}, and 7 maps an element of
K to its associated coefficient vector. Occasionally, we map between the canonical and coefficient
embeddings, which is a linear transformation depending only on K.

We give elements of K geometric norms by identifying them with canonical or coefficient em-
beddings. The £, norm of a € K under the canonical embedding is ||al|, = (3" |oi(a)|?)!/?, where
p € [1,00] and ||al]|cc = max{|o;(a)|}. The coefficient norm ||a||., we define to be the fo-norm
of a’s coeflicient vector. For convenience when converting from the canonical to the coeflicient
embedding, we let v2 denote the maximal value of ||al|.o/||all2 and v~ denote the maximal value
of ||allco/||allcc (Where the dependence of these values on K is understood).

The ring of integers O C K is the set of all algebraic integers in K. It forms a ring under
addition and multiplication, and it is a n-dimensional vector subspace of K. In particular, Ok
is a free Z-module of rank n — namely, the set of all Z-linear combinations of some integral basis
B ={by,...,b,} C Ok.

An (integral) ideal T C Of is a nontrivial (i.e., nonempty and nonzero) additive subgroup that
is closed under multiplication by O — that is, r-a € Z for any r € Ox and a € Z. It is finitely
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generated as the set of all Og-linear combinations of some generators aj,as,... € Og; we write
7 = (aj,a,...). Anideal Z is principal if Z = (a) for a € Ok — that is, if one generator suffices. A
fractional ideal T C K is a set such that d-Z is an integral ideal for some d € O . The inverse Z~!
of an ideal Z is the set {a € K :a-Z C Og}. A (fractional) ideal also can be represented as a free
Z-module of rank n — that is, it is generated as the set of all Z-linear combinations of some basis
B ={by,...,by,} C Og (or B C K when the ideal is fractional). We may refer to a (fractional)
ideal Z as an ideal lattice when viewing it as a Z-module, and apply lattice notation, such as A\;(Z).

The sum of two ideals is Z+ J ={a+b:acZ,b e J}. Two ideals Z,J C Ok such that
T+ J = O are relatively prime.

The product of two ideals is Z.7 is the additive subgroup formed by the set {a-b:a € Z,b € J}.
Anideal p C O is primeifa € por b € p whenever ab € pand a,b € Og. Everyideal Z C Ok can
be expressed uniquely as a product of powers of prime ideals — that is, Ok has unique factorization
of ideals.

The norm of an ideal Z is its index as an additive subgroup of O —i.e., N(Z) = |Ok/Z|. The
norm of an element a € Ok is N(a) = Ng/g(a) = [];¢[, oi(a). For a principal ideal 7 = (a) with
a € Ok, we have N(Z) = N(a). The set of fractional ideals form a group under multiplication, and
the norm is a multiplicative homomorphism on this group — in particular, N(Z.7) = N(Z)N(J) and
N(Z/J) = N(Z)/N(J). The relative norm Ng,r(a) of an element a € K over a subfield L C K is
[1,,e50i(a), where S consists of the K-embeddings o; that fix every element in L.

The unit group Ux C Ok is the group of invertible elements in Ok. If u € Uk, then the
index |Ok/ (u)| = 1, and therefore N(u) = £1. The unit group may contain torsion units (roots
of unity) and nontorsion units. By the Dirichlet Unit Theorem, the group of nontorsion units is
finitely generated and has rank s; + so — 1 (where rank refers to multiplicative independence).
The logarithmic embedding \ : K* — R51%52 is a homomorphism from a multiplicative group to
an additive group given by A(a) = (In|oi(a)l,...,In|os +s,(a)]). The kernel of A consists of the
torsion units in K. For every unit u € Uk (including nontorsion units), since N(u) = +1, we have
D icsy) I loi(w)|[ +2 3¢5, Infos,4i(u)| = 0 (hence the units have rank only s; +s2 — 1). In short,
viewed through the logarithmic embedding, the units are endowed with the geometry of a lattice.
We call this lattice the Dirichlet unit lattice.

7.1.1 Cyclotomic Number Fields

2mi/m

For positive integer m, let (,, = e € C denote the principal m-th root of unity. The m-th
cyclotomic number field is K = Q((n). The m-th cyclotomic polynomialis Uy, (z) = [Tz (x—CE).
This polynomial is monic, irreducible, has degree n = ¢(m), and its roots (the conjugates of Cm)
are the primitive m-th roots of unity in C. The field K has degree n. It is convenient to index the
embeddings by elements of Z*, instead of [n], where ¢;(() = (%, Since all of the embeddings are
complex, they come in sy = n/2 pairs — in particular, for i € Z7,, 0; is paired with o_;.

When K = Q((,), the ring of integers Ok is simply Z[(y] = Z[z]/ P ().

The cyclotomic field K = Q((y,) has a real subfield K+ = Q((m + (') — that is, {m + (0,
and thus all elements in K, are real numbers. It has index 2 in K; its degree is n/2. The ring of
integers O+ of KT is simply Z[(, + ¢,,}]- The embeddings 1,01 both fix every element in K+,
and the relative norm Ng g+ (a) of a € K is 01(a) - 0-1(a) = a-a.

The group of cyclotomic units Ui has rank s — 1 = n/2 — 1. Since the signature of the real
subfield KT is (n/2,0), the rank of the real cyclotomic units Ug+ = Ug N O+ is also n/2 — 1.
For m a prime power, Uy is generated by (,, and Ug+. For m a prime power, an explicit set of
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generators of U is {£Cm, (1 —CF)/(1—Cn) = k € Z%,}. To see that e = (1 —¢*)/(1—¢) is a unit,
observe that € = 1+ (p + ... + (571 € Ok and Ng/q(e) = ngz%(l - an)/]_[gez:n(l —¢t) =1.
Ramachandra [Ram67] explicitly described a full-rank set of independent units for the case that m
not a prime power.

In the coefficient embedding, where a € Ok is viewed as a polynomial a(z) € Z[z]/®,,(x), we
have an extension of Fermat’s Little Theorem: a(x)? = a(2?) mod Q for any prime Q. When
Q = 1 mod m, this becomes a® = a mod Q.

7.1.2 Some Computational Aspects of Number Fields and Ideal Lattices

An element v € K can be represented in its canonical embedding conveniently in terms of the
integral basis for O. Given v € K represented in its canonical embedding, it is efficient to convert
it to its coefficient embedding, or vice versa — via linear transformations corresponding to multipoint
interpolation and evaluation. “Efficient” means in time polynomial in n, log A, and the bit-length
of v. (Here, Ak is the discriminant of K. For the important case of the m-th cyclotomic field
of degree n = ¢(m), we have A < n".) Given vi,vye € K, represented in either their canonical
or their coefficient embeddings, it is efficient to compute v + vo, vi - vo, and vi/vs. To handle
denominators, the inverse 1/vs can be represented as v /N(vg) where v} € Ok.

A convenient way of representing a (fractional) ideal in field K of degree n is as a Z-module
(i.e., a lattice) of rank n, generated as the set of all Z-linear combinations of some basis B =
{b1,..., by} C Ok (or B C K when the ideal is fractional). We call this lattice an ideal lattice.
We may use notation like Z = £(B), where £L(B) denotes the lattice generated by B.

Like all lattices, an ideal lattice has a canonical basis called its Hermite Normal Form (HNF).
The HNF basis of a lattices is unique and can be computed efficiently from any other basis of the
lattice. The HNF basis has nice efficiency properties — in particular, it can be expressed in at most
O(nlogd) bits, where d is the absolute value of the determinant of a basis of the lattice [MicO1]. It
also has nice security properties, in the sense that it reveals no information that cannot be derived
in polynomial time from any other basis [MicO1]. For ideal lattices in the canonical embedding,
the HNF basis is an integer lattice representing a linear transformation of the integral basis of
Opk. The determinant of the HNF basis equals the norm of the ideal. Given HNF bases of ideals
71,7, one can efficiently compute an HNF basis for the ideals 7y 4+ Zs, Z; - Zo, Z1 /Zo. Various other
natural operations on ideals and bases are also efficient. An example: one can efficiently reduce an
element v € K modulo a basis B = {by,...,b,} of an ideal Z — that is, find the element w € K
with v —w € Z and w € P(B), where P(B) = {> ;- b; : x; € [-1/2,1/2)} is the parallelepiped
associated to B.

7.1.3 Computational Hardness Assumptions over Number Fields

Hard problems involving ideal lattices often have both algebraic and geometric aspects.

Geometrically, we can specialize standard lattice problems — such as the shortest vector problem
(SVP), shortest independent vector problem (SIVP), closest vector problem (SVP), the bounded
distance decoding problem (BDDP), etc. — to ideal lattices. The celebrated LLL algorithm [LLL82]
finds somewhat short vectors in (general) lattices:

— —
Fact 2. Let B = {b1,...,b,} be a basis of a lattice L. Given B, the LLL algorithm outputs a
vector U € L satisfying |7 ||a < 22 - det(L)Y™. The algorithm runs in time polynomial in the
size of its input.
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Schnorr and others have described other lattice reduction algorithms with a variety of tradeoffs;
for example, [Sch87] proves the following:

_>
Fact 3. Let B = {b_1>, ..., bn} be a basis of a lattice L. Given B and integer k, Schnorr’s algorithm
[Sch87] outputs a vector ¥ € L satisfying ||V |la < k0% . det(L)V/™ in time kOK),

The asymptotics of lattice reduction algorithms are still similar to [Sch87], and thus attacks on
ideal lattices using purely geometric tools are limited.

Algebraically, we can consider problems such as the factorization of ideals, the structure of the
class group and unit group, etc. Subexponential classical algorithms are known for factoring ideals,
computing the class group and unit group, and computing a generator of a principal ideal (the
Principal Ideal Generator Problem (PIGP)). Polynomial-time quantum algorithms are known for
the latter three problems when the degree of the field is constant [Hal05, SV05].

Factoring ideals reduces to factoring integers, hence is subexponential-time classically [LLMP90]
and polynomial-time quantumly [Sho97a]. In particular, for any monogenic ring R = Z[z]/(f(z))
such as Ok for a cyclotomic field K, there is an efficient algorithm to find all of the prime ideals
in R with norms that are a power of a prime p. The algorithm resorts to the following theorem.

Theorem 3 (Kummer-Dedekind, from [Ste08]). Suppose f(x) =[], gi(x)® mod p for prime integer
p. The prime ideals p; in Z[z]/(f(x)) whose norms are powers of p are precisely p; = (p, gi(x)).

There are polynomial time algorithms for factoring polynomials in Z,[z] — e.g., by Kaltofen and
Shoup [KS98|. Therefore, at least for monogenic rings, factoring an ideal with norm N efficiently
reduces to factoring the integer V.

Peikert and Rosen [PRO7] provided a reduction of an average-case lattice problem to the worst-
case hardness of ideal lattice problem, where the lossiness of the reduction was only logarithmic
over fields of small root discriminant. Gentry [GenlO] showed that ideal lattice problems are
efficiently selfreducible (in some sense) in the quantum setting. This worst-case/average-case
reduction exploited, among other things, efficient factorization of ideals via Kummer-Dedekind.
Lyubashevsky, Peikert and Regev [LPR10] defined a decision problem called “ring learning with
errors” (RLWE) and showed that an attacker that can solve RLWE on average can be used to solve
ideal lattice problems, such as SIVP, in the worst case. (Earlier, Regev [Reg05] found an analogous
worst-case/average-case connection between the learning with errors (LWE) problem and problems
over general lattices.) They relied heavily on the algebraic structure of ideal lattice problems — in
particular, on underlying ring automorphisms — to construct their search-to-decision reduction.

7.2 Averaging Attacks

In the so-called “averaging attack”, the attacker is given a set S = {v -y;}, where v,y1,y2,... are
ring elements, and its goal is to use “averaging” to recover v-¥, where v = v(z~!) is the conjugate
of v. It was used by Kaliski (in connection with patent [HKL"00]) and Gentry and Szydlo [GS02]
in attacks against NTRU signature schemes [HKL*00, HPS01]. We review the averaging attack
here. Along the way, we update the attack so that it works within the ring of integers of any
cyclotomic field. (Previously, the attack focused on the ring Z[z]/(z™ — 1), as used by NTRU
signature schemes.)

The averaging attack is relevant to our constructions in the sense that, for certain (ill-advised)
distributions of our params, the attacker could use the averaging attack to recover nontrivial
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information. For example, in one version of our constructions, params includes a zero-tester
Pt = [hz"/g|, and multiple terms {x; = [b;/z],} with b; € (g). Let b} = b;/g. From params, the
attacker can derive the values {[pux7], = hg" ! - b."}. Conceivably, depending on the particular
distributions of the parameters, the attacker could use averaging to remove the b}’s and recover
hgr 1.

We have a couple of defenses against this averaging attack. First, for our constructions it seems
that hg®~! (and other terms that could conceivably be obtained through averaging) do not seem
to be useful to the attacker. Second, as described in Section 6.4, we choose our params according to
distributions designed to make averaging attacks useless. More precisely, we adapt an observation of
Gentry, Peikert and Vaikuntanathan [GPV08] in the context of lattice-based signatures — namely,
that we can use a “good” lattice basis to generate a transcript of lattice points according to a
canonical distribution that reveals nothing about the particular good basis that we are using (aside
from the fact that it is “good”). We generate our params according to such canonical distributions.

Now, let us describe how the averaging attack works. The distributions of v and the y;’s
may vary, but let us suppose for concreteness that the challenger samples v/ and {y}} according
to Gaussian distributions v/ <+ Dzm , and y; < Dgzm 4, interprets these as coefficient vectors of
polynomials in Z[z]/(z™ — 1), and finally sets v < v/ mod ®,,,(x) and y; < y; mod ®,,(z).

Now, consider the average:

T

A= (1)) vy (Vi) = (V'V)'<(1/7‘)ZYi'}’i>-
i=1

=1

Under the canonical embedding, we have:

o(A,)=o0(v-v)-0(Y,), where Y, = ((1/7") Zyi yz> .
i=1

Toward understanding o(Y,), first consider a single vector o(y; - ¥;) in the summation. Recall
that, since we are working in a cyclotomic field, the embeddings are all complex and come in
conjugate pairs (0j,0_;), where o; for j € Z¥, denotes the embedding 0;((»n) = (. Moreover,
for any a in the cyclotomic field, the values o;(a) and o_;(a) are conjugate complex numbers,
and therefore oj(a) - 0_j(a) is a non-negative real number. Now, notice that oj(a) - o_j(a) =
oj(a)-oj(@) = oj(a-a). This means that each vector o(y; - y;) in the summation consists entirely
of non-negative real numbers!

It is clear that, for any j, the average o;(Y,) = 1/r> ., 0;(y: - ¥i) converges toward some
positive number (rather than tending toward 0). Moreover, by symmetry, it converges to the same
positive number for all j. Therefore, A, converges to s-v -V for some known positive real scalar s.

The imprecision of the average decreases with 1/4/r. If the coefficients of v are only polynomial
in size, then the averaging attack needs only a polynomial number of samples to obtain all of the
coefficients of v - ¥V to within less than 1/2, whereupon the attacker can round to obtain v - ¥
exactly. As we describe in Section 7.6, even if the coefficients of v are large, a e-approximation of
v - V, together with a basis of the ideal (v - V), is sufficient to recover v - ¥ exactly when € is some
inverse-quasi-polynomial function of m. (Note that it is easy to generate a basis of the ideal (v - ¥)
from a basis of the ideal (v), and that the latter (as mentioned previously) can likely be generated
from S.)
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If the averaging attack is successful and we recover v - ¥, we can then use an algorithm by
Gentry and Szydlo [GS02]. This algorithm takes v -V and a basis of the ideal (v), and outputs the
actual element v in polynomial time. (See Section 7.3.)

Can the averaging attack be extended? Since v -V is the relative norm Ng g+ (v) of v with
respect to the index-2 real subfield K™ = Q(Gn + (1) (see Section 7.1 for more details), it is
natural to ask whether the attack can be extended to other relative norms: Can we use the samples
S = {v-yi} to recover Ny (v) for some subfield L' of K that is not a subfield of K*?

7.3 Gentry-Szydlo: Recovering v from v -V and (v)

Here, we describe an algorithm by Gentry and Szydlo [GS02] (the GS algorithm) that recovers v
from v - v and a basis of the ideal (v). The algorithm runs in polynomial time.

Gentry and Szydlo used the algorithm in combination with the averaging attack above to break
an NTRU signature scheme. They used a set of samples S = {v -y;} to approximate v - v with
sufficient precision to compute it exactly via rounding, and then invoked (but did not implement)
the GS algorithm to recover v (the secret signing key). In our setting, the idea would be to
attack our params using a similar approach. The GS algorithm was originally designed to work in
Z[z]/(xP — 1) for prime p. Here, we adapt it to a more general setting over the ring of integers
O of the m-th cyclotomic field K. For convenience, we use R to refer to Ok, and Rp to denote
Zp|x])/Pm(z).

We describe the GS algorithm in detail, with proofs, because in Section 7.6 we will extend
the algorithm to address the setting where our approximation of some generator u of a principal
ideal Z = (u) (e.g., where u is v - V) is not precise enough to obtain the value u exactly via
rounding; we give a polynomial-time algorithm to recover u from a e-approximation of it when e is
inverse-quasi-polynomial.

Recall that the value v - ¥ is the relative norm of v € K = Q((,,) with respect to the subfield
Kt =Q((n+¢y,t) —le, vev= Ng/x+(v). The GS algorithm might be somewhat surprising, since
we do not know how to recover v efficiently from the norm Ny q(v) and a basis of (v). Indeed,
the value N /g(v) is superfluous, since it can be derived from the basis of (v); therefore, finding v
would solve the so-called Principal Ideal Generator Problem, which seems infeasible.

One might also be surprised that Ng g+ (v) and (v) are enough to uniquely define v, given
that N /g(v) and (v) only define v up to an infinite group of units. (See 7.1.1 for a discussion of
cyclotomic units.) Indeed, Ng/g+(v) and (v) are not enough to uniquely define v — in particular,
if v/ = v-u for any torsion unit (root of unity) u, we have Ny i+ (v') = N/ g+ (v) and (v') = (v).
However, in attacks, it is typically sufficient to obtain v up to a small set of roots of unity. On
the other hand, if u is not a torsion unit — e.g., if it is a nontrivial cyclotomic unit — then we will
have Ng i+ (u) # 1 and therefore Ny i+ (v') # Ng i+ (v). The reason we have Ny g+ (u) # 1
for nontorsion units is that, up to multiplication by a torsion unit, all nontorsion units in K are
already in the real subfield K+ — ie., u = ¢! - u’ where W € K¥ is a nontorsion unit. So,
Ng/r+(u) =u-u= u? # 1.

The essential strategy of the GS algorithm is to combine algebra (in particular, Fermat’s Little
Theorem) with lattice reduction (LLL). By an extension of Fermat’s Little Theorem, for any prime
P = 1 mod m, we have that v = v over Rp. Unless v is a zero divisor in Rp (there are only
poly(m;,log Ng/q(v)) primes P for which this can happen), we have vP=l = 1 over Rp. Now,
suppose that we compute a LLL-reduced basis B of the ideal <VP _1>; this we can do in time
polynomial in m, P, and the bit-length of v. The shortest element w in the reduced basis has the
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form vP—1

-a for some a. If it happens that ||a||., < P/2 —i.e., if a’s coefficients all have magnitude
less than P/2 — then we obtain a = [w]p exactly, and thus v©'~!. From v’~!, we can compute v
in time polynomial in m, P, and the bit-length of v.

The actual algorithm is more complicated than this, since the essential strategy above leaves

two important issues unresolved.

e Issue 1 (How to Guarantee that a is small): LLL guarantees that it will find w € <VP *1> of
length at most 2(»=1)/2. )\1(<VP_1>). But this does not imply that a = w/v"~! has length at
most 2("~1/2. Indeed, <vP *1> does not even define v uniquely (due to the group of units).
Since these units can have arbitrarily high Euclidean norm, a could be arbitrarily long.

e Issue 2 (LLL needs P to be exponential): Let us suppose that we could somehow use LLL
to ensure that ||al., < 2(*~1/2. Then, we need P to be at least 2("+1/2 for the strategy to
work. But then vP'~! is so long that it takes exponential time even to write it down.

The algorithm resolves these two issues with the following two tools:

e Tool 1 (Implicit Lattice Reduction): We apply LLL implicitly to the multiplicands of vF~' to
ensure that a = w/v"~! has length at most 2"~1)/2. The idea is that the relative norm v - ¥
actually reveals a lot about the “geometry” of v (and hence of v’~1). We use the relative

norm to “cancel” v ~1’s geometry so that LLL implicitly acts on the multiplicands.

e Tool 2 (Polynomial Chains): We use P > 2("*1/2_ However, we never compute on v !

directly. Instead, vP'~! and w are represented implicitly via a chain of polynomials that are
computed using LLL. From this chain, we compute a = [w]|p exactly. Next, we perform
computations modulo a set of small primes p1, ..., p: — specifically, we reduce a modulo the
pi’s, and use the polynomial chain to compute v’~! modulo the p;’s. We do the same thing
for another large prime P’ such that ged(P — 1, P’ — 1) = 2m, and then use the Euclidean
algorithm (in the exponent) to compute v2™ modulo the p;’s. We chose the p;’s so that
2||v?™||co < [1pi, s0 we obtain v>™ exactly, from which we can compute v efficiently.

Below, we discuss the GS algorithm in detail. We begin with implicit lattice reduction, as
characterized by the following lemma.

Implicit Lattice Reduction.

Lemma 6 ([GS02]). Let v € R. Given v -V and the HNF basis B for the ideal lattice (v), we can
output an element w € (v) such that w = v -a and ||a]s < 2*=D/2. /0 in time polynomial in m
and the bit-length of v.

Proof. Consider how LLL works. LLL maintains a sequence of n basis vectors (wf,...,w,). In
general, when LLL is deciding whether to perform an operation — a size-reduction step or a swap
step — the only information that LLL requires are all of the mutual dot products <1Fi, @}Mew. In
short, LLL needs only the Gram matrix corresponding to its reduced-so-far lattice basis.

Now, consider LLL in our setting, as applied to ideal lattices under the canonical embed-
ding (without trying to do LLL implicitly yet). At a given stage, LLL has a sequence of vectors
(o(w1),...,0(wy)) where the w;’s are in (v). LLL (as before) considers only the mutual (Hermi-
tian) inner products of the vectors in deciding whether to perform a step. These inner products
are of the form (o(w;),0(W;)) = > iz oh(WiW;).
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Now, to do LLL #mplicitly in the canonical embedding — i.e., to use LLL to reduce the multi-
plicands a; = w;/v — LLL needs the mutual Hermitian inner products for ¢, 5 € [n]:

(o(wi/v),o(wi/v) = 3 orwi/Vorwi V) = 3 ou(1/v¥)on(w,w;).

kezx, kezx,

But all of the values o (1/vV) can be computed efficiently from v-¥ (and the implicit LLL algorithm
actually possesses all of the vectors {o(w;)}). Therefore, LLL has all of the information it needs
to decide whether to perform a step. To actually perform a step implicitly — size-reduction or
swapping — it simply applies the linear transformation dictated by the step to the vectors {o(w;)}
that it has in its hand.

The bound ||al|z < 2("=1/2.\/n follows from the guarantee of LLL and the fact ||1]|z = /7 in
the canonical embedding. d

Polynomial Chains.

Lemma 7 (Theorem 1 in [GS02]). Let vo € R. Let k = Y k;2¢ with k; € {0,1} be an integer with
r = |logy k|. Let P be a prime such that vo is not a zero divisor in Rp. Then, given the input
vo - Vo and a basis By of (vo), we may compute, in time polynomial in r, m, and the bit-length of
the input, the chains:

kr—1 2 — k 2 o
{vo" ' vy Vi, vt v -V and

{VO “VQ, ..y Vo1 VTfl}a

where for all i > 0, no v; is a zero divisor in Rp, and ||v;||zs < 2"=Y/2\/n. Using these chains,
we may compute vlg - v, mod P in polynomial time. If k = P —1 > 2("+1)/2\/ﬁfyg with P =
1 mod 2m, we may compute Vv, exactly, and thereafter use the above chains to compute vg)*l mod @
in polynomial time for any prime Q such that v, is not a zero divisor in Rg.

Proof. (Sketch) Consider the first term of the first chain: vg“l - v - V1. For convenience, let
¢ = ky—1+2. Given vq-Vy and a basis By for (vo), we efficiently compute v§-vo© and a basis By, for
the ideal (v§). Then, using implicit lattice reduction (Lemma 6), we efficiently compute w = v{§j - a
with ||alls < 2(*=D/2,/n. We set w to be the first term of our chain and set v, + a. (Gentry and
Szydlo provide techniques to handle the small possibility that vy is a zero divisor in Rp.)

Now, we compute v - V] as w - W/(v§ - vo¢). Also, we compute a basis By of (v1), as follows.
Since Bj, generates (v§), the terms of the basis B of (v§) have the form b; = v§ - a;, where
R = ({a;}). Our basis By of (v1) consists of the terms b; - W/(v§ - ¥o¢) = vy - a;, which generates
(v1) since (again) R = ({a;}).

Now that we have v; - v and a basis B; of (v), we continue the same process iteratively to
compute all of the terms in the chains.

We compute V’é -V, mod P iteratively, as follows. For s < r, let QNS [0,25F1 — 1] denote the
s+ 1 MSBs of k. Suppose, inductively, that we have computed vg(s) -vs mod P. (For s = 1, this
term already exists in the polynomial chain.) Then, we compute

(s+1) (s) ky_s_ - .
vlg Ver1 = (vlg -vs)2 - (vy ! -vg Ver1)/ (Vs - vs)2 mod P
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where the latter two multiplicands on the right-hand-side come from the polynomial chains. (Notice
that this iterative computation is rather similar to the repeated squaring approach to modular
exponentiation. )

We compute Vv, exactly as vg) 1. ¥, mod P. (This works since the coefficients of v, have
magnitude at most ||v;[2ye < 2""D/2\/nye < P/2.) Thereafter, we clearly can compute v}
modulo any prime @) for which Vv, is not a zero divisor in Rg. O

Remainders of the GS Algorithm.

Lemma 8 (Theorem 2 in [GS02]). Let v € R. Then, given v -V and a basis B of (v), we may
compute V2™ in time polynomial in m and the bit length of v.

Proof. We choose primes P and P’ each large enough for Lemma 7, where ged(P —1, P’ —1) = 2m
and v is not a zero divisor in either Rp or Rps (using Dirichlet’s theorem on primes in arithmetic
progression and the fact that v may be a zero divisor in R for only a finite number of primes Q).
By Lemma 7, we can compute chains that will allow us to compute v~ mod p; and v~ mod p;
in polynomial time for any prime p; such that the values v, and ¥, in the chains are not zero divisors
in Rp,. Choose a set of primes py, ..., p; that satisfy this condition and such that 2||[v*™| ., < []p:-
(We simply avoid the finite number of problematic primes.) Apply the Euclidean algorithm in the
exponent to compute v modulo each p;, and ultimately v>™ exactly using the Chinese Remainder
Theorem. O

Lemma 9 (Similar to [GS02]). Let v € R. Let w = v" where 2m divides r. Then, given w, we
may output a list L of r values vi,..., v, in time polynomial in r and the bit length of w, such that
L includes v.

Lemma 9 may seem trivial, and it certainly would be if » and m were relatively prime. In this
case, one could simply pick a prime Q > 2||v||c, with ged(r,Q —1) =1, set s = 7~ mod m(Q — 1),
and compute w® = v'5 = vithm@-1) — y ip Rg (by Fermat’s Little Theorem), which yields v
exactly. Things become more complicated when ged(r,m) # 1.

Proof. First, we observe that w does not uniquely determine v. Specifically, for any e = +2* € R
(the 2m values that are plus or minus an m-th root of unity in R), we have that v - e is also in R
and w = (v - e)". However, we show that fixing v’s value at any (complex) primitive m-th root of
unity (,, also fixes v’s value at the other primitive m-th roots of unity, after which we may obtain
v via interpolation. Given w((,,) = v((n)", there are only r possibilities for v((,,). By iterating
the procedure below for each possibility of v((,), the procedure will eventually use the “correct”
value, and the correct value of v will be included in the output.

For any prime @, by an extension of Fermat’s Little Theorem, we have that a(z)? = a(2?) in
the ring Rg. Let () = cr — b be a prime for some positive integers b < r and ¢ such that w is not a
zero divisor in Rg and Yoo ||[W||oe < Q/2. (Recall that v4, denotes the maximal value of ||al|¢o/||al|oo
for a € K.) Given that m divides r, we compute that (v")¢ = v@v? = v(2?)v? = v(27?)v® mod Q.
Since Yoo - [[V(270) V0|00 < Yoo [[W(loo < Q/2, we efficiently recover the term z, < v(27°)v? exactly.
This allows us to compute v(¢.*) = zy(Cn)/V((n)?. By choosing other Q’s, we similarly compute
zy, for each b € Z7 | thereby compute v(() for all complex primitive m-th roots of unity ¢, and thus
recover v. O
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Theorem 4 ([GS02]). Let v € R. Given v -V and the HNF basis B for the ideal lattice (v), we
can compute v in time polynomial in m and the bit-length of v.

Proof. This follows from Lemmas 8 and 9. 0

Some Extensions.

Howgrave-Graham and Szydlo [HGS04] observed that one can use the GS algorithm to recover v
from the relative norm Ng g+ = v -V without a basis of (v), as long as one has a factorization
of Ng/o(v - V) = Ng/o(v)?. The idea is that, from Ng/k+ = v -V and the factorization, one can
use Kummer-Dedekind (Theorem 3) to generate a basis of some v/ such that v/ - v/ = v - ¥ (v
may not be unique). If Ng/o(v) is composite, one can compute its factorization using a classical
sub-exponential factorization algorithm such as the number field sieve [LLMP90, LL93] or Shor’s
polynomial-time quantum algorithm [Sho97a].

Another way to view the GS and HS algorithms is the following. The averaging attack yields
the Gram matriz (essentially the co-variance matrix) Bﬁiv - Byrip associated to the secret lattice
basis of the signer. In early NTRU signature schemes, this Gram matrix happened to have a very
special form; it corresponded to the relative norm Ng/x+(v) = v - V. The GS and HS algorithms
are able to factor the Gram matriz in this special case (using the auxiliary information (v) in the
case of the GS algorithm).

The NTRUSign signature scheme [HHGPT03] was proposed shortly after the Gentry-Szydlo
attack was announced. As noted in [GS02, HGS04], for NTRUSign, applying an averaging attack
similar to that described in Section 7.2 still yields the Gram matrix B;Frw - Bpriv associated to the
secret lattice basis of the signer. However, the Gram matrix in NTRUSign has a more complicated
form than in previous NTRU signature schemes. In particular, it is a 2 x 2 block of ring elements:

v-v+V.V w-VvV+W.-V
v-w+V-W w-w+W- W

where v, w, V and W are short elements that constitute the signer’s private key. It remains an
open problem to efficiently factor Gram matrices of this form (as well as general Gram matrices),
even when given a basis (e.g., the HNF basis) of the lattice generated by Bppiy. Szydlo [Szy03]
showed that the Gram matrix factorization problem can be reduced to an oracle that distinguishes
whether two Gram matrices are associated to bases of the same lattice, but it is unknown how to
instantiate this oracle efficiently in general.

The GS algorithm suggests an open problem about other relative norms: Is it possible to
efficiently recover v from (v) and the relative norm Ny, (v) when L is some subfield of K other
than the index-2 real subfield K*? When L = Q, this is just the Principal Ideal Generator problem,
which seems infeasible in general, but perhaps the problem is feasible when the index [K : L] is
small or smooth. For example, suppose K is the m-th cyclotomic field for m = 2* and L is an
index-4 subfield. In this case, can we efficiently recover v from (v) and Ng,1,(v)? Can we, perhaps,
first recover Ng/g+(v) from (v) and Ng,r(v), and then use the GS algorithm to recover v? It
seems doubtful, since the GS algorithm relies implicitly on the fact that (v) and Ng g+ (v) define
v uniquely up to torsion units, due to the special relationship between the cyclotomic units and
the subfield K.

We remark that it is interesting that, while the GS algorithm clearly relies on the structure of
the cyclotomic unit group, this reliance is implicit; it would be worthwhile to make the connection
more explicit.

BT : Bpriv =

priv
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7.4 Nguyen-Regev: A Gradient Descent Attack

Nguyen and Regev [NR09] described how to extend averaging and key recovery attacks to signature
schemes based on general lattices — in particular, to lattices underlying the GGH [GGH97] and
NTRUSign [HHGP"03] signature schemes (for suggested parameters). These attacks show that
averaging a transcript of lattice-based signatures can be a devastating attack in general, and further
recommend the approach taken by [GPV08] of ensuring that the distribution of signatures has some
canonical distribution (e.g., a Gaussian distribution) that is essentially independent of the particular
lattice basis that the signer is using.

Their attack is designed to “learn a parallelepiped”. That is, given samples { By 372>} where the
yi’s are (discretely) uniform over a hypercube, their attack converges upon the shape of P(Bpriy)
and ultimately outputs the private basis Bpi,.

To understand the NR attack, it might help to understand why previous attacks failed to break
GGH and NTRUSign. Previous attacks, were (in some sense) too modular. They divided the attack
into two parts: 1) an averaging/covariance/second-moment attack which used samples { By, - y; }
to recover the Gram matrix B;j);“iv - Bpriy associated to the secret lattice basis of the signer, and 2) a
“factoring” attack that either factored the relative norm [GS02, HGS04] or otherwise tried to factor
the Gram matrix [Szy03]. The second step, the factoring attack, sometimes used a lattice basis
as auxiliary information (as in the GS algorithm). But, crucially, the second step did not use the
samples. After using the samples to obtain the Gram matrix (and a lattice basis), previous attacks
simply discarded the samples. In this case, key recovery reduces to the Gram matrix factorization
problem (with a lattice basis), for which no general polynomial-time algorithm is known.

In contrast, the NR algorithm is (in some sense) less modular. They use the samples throughout
the attack. In particular, they first show that the 4-th moment (also known as the kurtosis) of a
transcript of signatures defines a global minimum related to the secret key. (Recall that, for a set
of vectors B = {b_1>, ol b_n)} € GL,(R), the k-th moment of the parallelepiped P(B) over a vector
W is defined as momp (W) = Exp[(W, W)*] where % is chosen uniformly over P(B).)

_>
Lemma 10 (Lemma 3 in [NR09]). Let B = {b_f,...,bn} € GL,(R). Then the global minimum

— —
of momB,4(w) over the unit sphere of R™ is 1/5 and this minimum is obtained at +£by,...,£by,.
There are no other local minima.

Then, they use gradient descent to find this global minimum approximately, using the samples at
each stage of the descent to approximate the gradient function. This leads to the following theorem.

Theorem 5 (Theorem 4 in [NR09]). For any cy > 0 there exists a ¢; > 0 such that given n“
samples uniformly distributed over some parallelepiped P(B), B = {b?,,ﬁ} € GL,(R), the
approzimate gradient descent algorithm outputs with constant probability a vector B - € where € is
within o distance n~° of some standard basis vector e;.

Assuming the approximate solution output by the NR algorithm is “good enough” — that is, good
enough to obtain B exactly via rounding — the NR attack succeeds. The secret bases in GGH
and NTRUSign have small entries (polynomial in the security parameter), and so the NR attack
succeeds asymptotically with only a polynomial number of signatures, also also performs quite well
in practice for suggested parameters.

One issue that the NR attack leaves somewhat unresolved is: What happens when the ap-
proximate solution output by the NR algorithm is not “good enough” to use rounding to get the
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exact solution? Nguyen and Regev suggest using a CVP approximation algorithm, which they
observe performs reasonably well in practice on suggested parameters, but which of course is not
polynomial-time in general. This is a weakness also of the averaging attack described in Section
7.2. This weakness suggests an obvious way of fixing the schemes: choose the secret basis so that
its entries are super-polynomial or even sub-exponential integers, so that averaging attacks cannot
approximate the entries of the basis precisely enough to obtain them exactly via rounding. (Of
course, this makes the cryptographic construction less practical, but still polynomial-time.)

In Section 7.6, we describe an attack that casts doubt on this fix, at least in the context of
ideal lattices. We show that we can recover v from (v) and a e-approximation u of v when e is
inverse-quasi-polynomial, even when the coefficients of v are arbitrarily large.

7.5 Ducas-Nguyen: Gradient Descent over Zonotopes and Deformed Paral-
lelepipeds

The Nguyen-Regev algorithm was designed to “learn a parallelepiped”, Ducas and Nguyen [DN12b]
showed how to extend the algorithm to learn more complicated shapes, including zonotopes and
deformed parallelepipeds.

Recall that the parallelepiped associated to a basis B = {by,..., by} is the set P(B) = {D>_z; -
b, : z; € [-1/2,1/2)}. Under certain circumstances (see Section 7.4), Nguyen-Regev learns the
parallelepiped P(B) from samples of the form {B-r}, where r = (r1,...,r,) is (discretely) uniform
over an n-dimensional hypercube. This algorithm breaks certain signature schemes, such as the
basic version of NTRUSign [HHGP103], where a transcript of signatures implicitly provides samples
{Bpriv-T} where By, is the signer’s private basis. A zonotope is a generalization of a parallelepiped
to a dependent set of vectors. Let M = {bq,...,b,,} be a n X m matrix for m > n. The zonotope
formed by M is the set Z(M) = {> x;-b; : z; € [-1/2,1/2)}. Even though the vectors of M are
dependent and the zonotope has a shape that is “closer to spherical” than a parallelepiped (the
corners typically have more obtuse angles), Ducas and Nguyen show the Nguyen-Regev algorithm
can be extended to this setting, when the samples have the form {M - r}, where r is (discretely)
uniform over an m-dimensional hypercube. Their new algorithm does not provably always work,
but it works quite well in practice. They used their algorithm to break a version of NTRUSign with
a “perturbations” countermeasure. In NTRUSign with perturbations, the signer uses perturbations
to obscure its private basis, in such a way that a transcript of signatures induces the distribution
of a zonotope rather than a parallelepiped.

Can the Nguyen-Regev and Ducas-Nguyen algorithms be extended even further? For example,
suppose we have samples of the form {B -7} or {M - r}, where r comes from a discrete Gaussian
distribution. In these cases, assuming that the coordinates of r have moderate deviation, one can
show [Peil0, AGHS12] that the samples also have a discrete Gaussian distribution over the lattice
generated by B or M, where the Gaussian is ellipsoidal according to the shape of B or M. In
the latter case, the ellipsoid get closer to a sphere as m gets larger relative to n (in the sense that
the singular values of M get closer together). A discrete ellipsoidal Gaussian does not have any
“corners” like a parallelepiped or zonotope, which are the local minima of the Nguyen-Regev and
Ducas-Nguyen algorithms. This fact seems to prevent a direct application of Nguyen-Regev or
Ducas-Nguyen. However, the shape of the ellipsoid still may provide some useful information.%

SFor signature schemes, the signer can use the Gaussian samplers from [GPV08, Peil0] to get a perfectly spherical
distribution, thus ensuring that the transcript of signatures “leaks no information at all.”
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Interestingly, the re-randomization algorithm of our construction (see Section 4) involves adding
a term of the form (M - r)/z, where r has a spherical Gaussian distribution. Consequently, the
numerator of this added term has an ellipsoidal Gaussian distribution, where the numerator’s shape
depends on the shape of M. Note that as opposed to the case of signatures, re-randomization in
our construction is not supposed to hide M (in fact we give out M/z in the public parameters).
Rather, the purpose of re-randomization in is just to “drown out” the initial value that is being
randomized (while preserving its coset wrt the ideal 7).

7.6 A New Algorithm for the Closest Principal Ideal Generator Problem

As usual, let R be the ring of integers for the m-th cyclotomic field. Let v € R and Z = (v). Let u
be a e-approximation of v —i.e., 1/(1 +¢€) < |ox(v)/ox(u)| < 1+ € for all k € Z¥,. How efficiently
can we recover the principal ideal generator v from Z and u?

A cryptanalyst would hope that we can recover v whenever € is bounded by some inverse-
polynomial function, so that the averaging and Nguyen-Regev attacks become more devastating.
Recall that the averaging and Nguyen-Regev attacks only output a 1/poly-approximate solution of
v (or a related value) when given a polynomial number of samples; afterward, the attacks attempt
to output an exact solution by rounding (or by solving approximate-CVP, but this is not efficient
in general). Thus, the averaging and Nguyen-Regev attacks can easily be escaped by choosing v so
that its coefficients are super-polynomial in size. However, a cryptanalyst could prevent this escape
with an efficient algorithm to recover v from a 1/poly-approximation of v, since this would break
the scheme regardless of how large v’s coefficients are.

Here, we show how to recover v in time polynomial in m and the bit-length of v, assuming
that e is bounded by some inverse-quasi-polynomial function in m. This algorithm does not quite
fulfill the cryptanalyst’s dream, but it suggests a direction for future, possibly more devastating
attacks. The algorithm that we describe here is a natural extension of the Gentry-Szydlo algorithm
([GS02], see Section 7.3). Whereas the GS algorithm uses the ezact information about v’s geometry
provided by the relative norm Ny, + (v) = v - ¥, our algorithm here tries to make-do with the
approximate information provided by u.

The algorithm follows the algebraic strategy of the GS algorithm. In particular, it invokes
Fermat’s Little Theorem to assert that v = 1 mod P for prime P when (P — 1) and m divide r
(as long as v is not a zero divisor in Rp). Next, it applies (implicit) lattice reduction to the lattice
7" to obtain a reduced element w = v” - a. Finally, it tries to recover a (and hence v) by using the
fact that a = w mod P. The main differences between the GS algorithm and our algorithm are:

e We require r to be only quasi-polynomial (not exponential): The GS algorithm has exact
information about v’s geometry, which allows it to derive exact information about v"’s ge-
ometry even when r is exponential (though this information is represented implicitly in the
polynomial chains). In contrast, we only have approximate information about v’s geometry,
and the accuracy of our information about v"’s geometry degrades exponentially with r. So,
we cannot have r much bigger than 1/e.

e We will work modulo the product of many primes: To compensate for the fact that r cannot
be too large in our setting, we choose r so that (p; — 1) divides r for many primes p;,
and we work modulo P = [[p;. We heuristically estimate that we can achieve P = 2%(™)
when r = 20(ogmloglogm) (Similar to the GS algorithm, we need P to exceed the LLL

approximation factor, and then some.)
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Let us begin by considering how to set r and P. For some k to be determined, let qi,...,qx
be the first k primes, and set 74, = m][[q. Set Sk, be the set of 2k products of m with a
subset product of qi,...,qz. Set Tpm = {1 +5s : s € Spm}t, Pem = {prime p € T}, }, and
Py = HpEPk,m p. We claim that (7, Prm) will tend to be a good choice for (r, P). Certainly it
is true that 7, is divisible by p; — 1 for the primes that divide P; the remaining issue is the size
of 74m and P ,.

First, consider the size of 7 ,,. We have:

k
Inrg, =Inm+ Zlnqi =lnm+q+ok)=lnm+klnk +o(klnk),
i=1
where the second and third equalities follow from extensions of the Prime Number Theorem (see
Corollaries 8.2.7 and 8.2.8 in [BS96]). Assuming kIn k dominates m, we have ry,,, = 2(+o()kInk,
Now, consider the size of Py ,,. Clearly, many elements of 7} ,, are not prime. For example,
1 4+ s cannot be prime unless s is divisible by 2 — i.e., unless 2 is part of the subset product that
forms s. Similarly, if s is a subset product not divisible by 3, then 1 + s has (roughly) only a 1/2
(versus the usual 1/3) probability of not being divisible by 3. But, aside from such observations,
we would heuristically expect that, by the Prime Number Theorem, an element ¢ € T} ,, has a
2(1/Int) chance of being prime. With this heuristic, we calculate:

Pom= [[ p= [J t2V/10 = 22Tmb — 9224
pepk,m ten,m

Assuming these heuristic estimates of ry, ,, and Py ,, are true, then for any constant c;, there
is a constant cp, such that setting k = [Inm| + ¢z ensures that Py, is at least 2¢1". With this
value of k, we have 7y, = 20Fo())nmininm — p,(1+o(1))n2Inlnm =y other words, while Py, is
exponential in m, 7 ,, is only slightly quasi-polynomial in m. For convenience, we capture these
observations in the following claim.

Claim 1. Let p,,(z) denote the smallest positive integer such that there exist distinct primes {p;}
such that [[pi > = and pp(z) is divisible by m and (p; — 1) for all i. Then, for x = 2™ we
have Pm(x) — 9(l4o(1)) InlnzInlnlnz g, o — 2®(m)7 we have Pm($) — m+o(1))Inlnm  pp, “proof”
of the claim is constructive — that is, one can (heuristically) generate a value vy, that meets these
asymptotic bounds of pm(x) by setting ry , to be the product of m with the first ¢ + Inlnx primes
for some constant c.

Next, we revisit Lemma 7, adapting implicit lattice reduction and the polynomial chains of the
GS algorithm to our setting.

Lemma 11 (Adaptation of Lemma 7). Let vog € R and let By be the HNF basis By for the ideal
lattice Ty = (vg). Let ug be an e-approximation of vo — i.e., 1/(1 +€) < |ok(vo)/or(ug)] < 1+¢€
for allk € Z¥,. Let k =" k;2" with k; € {0,1} be an integer with r = |logy k|. Let P be an integer
such that vq is not a zero divisor in Rp. Then, given the input (Bg,ug), we may compute, in time
polynomial in r, m, and the bit-length of the input, the chains:

Kk,
{vg ™ -vg/vl, .. ,Vgo -vz_l/vr}

where for all i > 0, no v; is a zero divisor in Rp, and ||vills < 20=D/2/n(1 + e)k(i), where
k@ is the integer formed by the i + 1 most significant bits of k. Using these chains, we may
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compute vlg/vr mod P in polynomial time. If k and P are such that vlg = 1lmod P and P >
2(”“)/2\/5(1 + €)Fy2, we may compute v, exactly, and thereafter use the above chains to compute
vlg mod @ in polynomial time for any prime @ such that v, is not a zero divisor in Rg.
Proof. Consider the first term of the first chain: Vlgr_l -V% /v1i. For convenience, let ¢ = 2k, + ky_1.
Given (By,ug), we efficiently compute a basis By, for the ideal Z), = (uf) /Z¢. Apply LLL to
B{. Set u; € Zj to be the element corresponding to the shortest vector in the reduced basis.
Since Z|, is a principal (fractional) ideal, we have u; = (ug/vo)°v; for some vi € R. (To handle
the possibility that vy is a zero divisor in Rp, use techniques by Gentry and Szydlo.) Since
vi = uy - (vo/up)¢, we have that [[vi[s < 2*=1D/2./n - (1 + €)° by the guarantee of LLL and
the fact ||[vG/ufllec < (1 + €)¢. Include the term uf/u; = v§/vy in the polynomial chain. Observe
that uy is a (1 + €)¢ approximation of v;. Also, we can efficiently generate a basis B; of the ideal
I = (v1) = (wm) /I,

The second term in the chain is supposed to be vg
efficiently compute a basis B for the ideal Z| = <u§’"’2u%> /(T —272). Apply LLL to Bj. Set

uy € 7] to be the element corresponding to the shortest vector in the reduced basis. Since Z] is
a principal (fractional) ideal, we have us = (ug/vo)* —2(uy/v1)?vs for some vy € R. (To handle
the possibility that vy is a zero divisor in Rp, use techniques by Gentry and Szydlo.) Since
vy = uy - (vo/ug)¥r—2(vi/uy)?, we have that ||valls < 200-D/2. /. (1 4 ¢)*rt2hr1thkr—2 by the
guarantee of LLL and the fact ||(vo/ug)*—2(vi/u1)?||oc < (1 + €)*rt2hr—1+k—2 Tnclude the term
ulg“Q cuf/uy = V§“2 -v?/vy in the polynomial chain. Observe that uy is a (1 + ¢)%rF2kr—14kr—2
approximation of va. Also, we can efficiently generate a basis By of the ideal Zy = (va) = (ug) /Z7.
One continues in this fashion until all the terms in the polynomial chain are computed.

The rest of the proof proceeds similar to the proof of Lemma 7. 0

"2 . v2/vy. Given (By, By,ug,uy), we

Since in Lemma 7 k may be super-polynomial, we prefer not to compute vlg directly. Instead,
as in Lemma 8, we may compute ng by computing V’gl and VISQ for which ged(kq, k2) = 2m, and
then applying the Euclidean algorithm in the exponent.

Lemma 12. Let v € R and let B be the HNF basis B for the ideal lattice T = (v). Let u be an
e-approximation of v —i.e., 1/(1+¢€) < |ox(v)/or(u)| < 1+€ for all k € Z%,. Then, given u and
B, we may compute v>™ in time polynomial in m and the bit length of v.

Proof. Similar to the proof of Lemma 8. O

Theorem 6. Assuming Claim 1, there is an ¢ = m~(Te)Inlnm g op 4pat given the HNF basis
for the ideal lattice T = (v) for some v € R and an e-approximation u of v, we can compute v in
time polynomial in m and the bit-length of v.

Proof. This follows from Lemmas 12 and 9 and Claim 1. O

We remark that this algorithm implies that the bounded distance decoding problem (BDDP)
is easy for the Dirichlet unit lattice A for surprisingly low approximation factors. (Recall from
Section 7.1 that the Dirichlet unit lattice is the lattice formed by the image of the units under the
map A : K* — R51752 given by A(a) = (In|oy(a)l,...,In|os+s,(a)|).) Specifically, by the above
algorithm, given an e-approximation u of a unit v, we can recover v exactly. So, in the Dirichlet unit
lattice, taking logarithms, given a vector A(u) whose /o, distance from A is at most In(1 + €) ~ ¢,
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we can efficiently recover the vector in A-vector closest to A(u). Really, this corollary is not so
surprising, since in the case of the m-th cyclotomic field for prime power m we already have in our
hands a fairly short basis of A given by the basis {\(b;) : b; = (1 — (%) /(1 — () : i € Z%,}, which
gives more direct ways of achieving the same result. What is interesting is that, as with the GS
algorithm, the algorithm above does not explicitly use the structure of the unit group, though of
course it must be doing so implicitly; it would be interesting to make the connection more explicit.

7.7 Coppersmith Attacks

Coppersmith-type attacks [Cop96a, Cop96b] would seem to be ideally suited to ideal lattices, as
these attacks elegantly combine algebra and geometry. Somewhat surprisingly, however, they have
not yet resulted in attacks that are more effective than generic lattice reduction algorithms.

Cohn and Heninger [CH11] applied Coppersmith’s method to solving the BDDP over ideal
lattices. In the BDDP over ideal lattices, one is given a basis B of an ideal lattice Z C R and an
element u € R that is very close to some v € Z; the task is to output v. Following Coppersmith’s
method, and to oversimplify a bit, Cohn and Heninger let x = u — v be the small unknown offset,
and generate numerous univariate polynomials that have x as a root modulo Z* for some large
exponent t. For example, any polynomial of the form a” - (u — X)!™" with a € Z evaluates at
x to an element that is in Z?, and therefore any linear combination of such polynomials does as
well. These polynomials form a lattice, and they apply LLL to this lattice to find a polynomial
p(X) with (somewhat) small coefficients. They design the lattice so that p(x) is small (by the
smallness of p’s coefficient vector and of ||x||), indeed smaller than any nonzero element in Z°.
Since p(x) = 0 mod Z*, they conclude that p(x) = 0 exactly, whereupon they recover x with efficient
characteristic-zero root finding techniques [Len83].

Coppersmith’s method works well in many settings involving integers — e.g., finding small solu-
tions of univariate equations [Cop96b], factoring when the MSBs of a factor are known [Cop96a,
factoring numbers of the form p"q for large » [BDHG99], etc. The main obstacle to successfully
applying this method to ¢deals appears to be that the Coppersmith lattices involved have too high
dimension. The Coppersmith lattice used by Cohn and Heninger has n x n blocks where one would
have only a single entry in the integer case. In short, the lattice dimension is multiplied by n versus
the integer case, and consequently the lattice reduction step performs much worse.

We remark that the GS algorithm, as well as our algorithm for solving the closest principal ideal
generator problem (see Section 7.6), have a strategy somewhat similar to Coppersmith’s method.
In particular, they use Coppersmith’s strategy of using lattice reduction and smallness to convert
a modular equation to an exact equation, and thereafter to extract roots in characteristic zero.

7.8 Principal Ideals with a Generator

Gentry [Gen01] observed that, given a generator v of a principal ideal Z in the ring Z[z]/(z™ — 1),
one can construct a sub-lattice of Z of dimension only |(m + 1)/2] that contains a vector of length
2 - A1(Z). Therefore, one can hope to find a short vector in Z by reducing a lattice that has only
half the usual dimension. We can update this observation to obtain the following results about
principal ideals in the ring of integers O of the m-th cyclotomic field K.

Lemma 13. Let B be a Z-basis of a principal ideal T = (v) over the ring of integers O of the
m-th cyclotomic field K. Let n = ¢(m). Let A be the n/2-dimensional sub-lattice of T given by A =
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{v-r:r € Og+}, where O+ is the ring of integers of the index-2 real subfield K+ = Q((m + C0Y)
of K. Then, \(A) < 2X\(Z).

Proof. Let z € T be such that ||z]2 = A\i1(Z) (in the canonical embedding). Since Z is principal,
z =v-a for some a € Ok. Let z’ = v-a, where a = a(z~!) is the conjugate of a. Then

I2'|* = (o(2),0(@)) = Y on@)on@) = ) ox(v)or(a)ox(V)ox(@) = Y ox(z)ox(@) = ||zl

kEZs, kEZs, kEZs,
Thus, z+ 2’ is a Z-element with length at most 21 (Z), and it is contained in the sub-lattice A. ]

Theorem 7. Let v be a generator of a principal ideal T in the ring of integers O of the m-th
cyclotomic field K. Given v, we can efficiently construct a n/2-dimensional sub-lattice of T that
contains some w € L of length at most 2X1(Z).

Proof. From v, we can efficiently construct a lattice A that contains precisely all elements of the
form v - a for a € Og+. By Lemma 13, the lattice A has the desired properties. O

In fact, we can do slightly better. We can also consider the sub-lattice A~ that contains precisely
all elements of the form v - a where a is in the n/2 dimensional lattice of elements that can be
expressed as b — b for some b € Ox. We can then show that either A or A~ has a Z-vector of
length at most \/§A1(I).

In Section 7.8.1, we extend this dimension-halving attack on principal ideal lattices to the setting
where the attacker is not given a generator of the ideal (rather only a Z-basis of the ideal).

7.8.1 Dimension Halving in Principal Ideal Lattices

Is approximate-SVP for principal ideal lattices easier than it is for general ideal lattices (over the
ring of integers of the m-th cyclotomic number field)? For general ideal lattices, currently the
best known algorithm for approximate-SVP involves applying a lattice reduction algorithm (e.g.,
LLL [LLL82] or BKZ [Sch87]) to a lattice of dimension n = ¢(m). However, as we will see, the GS
algorithm implies that, for principal ideal lattices, we only need to reduce lattices of dimension n/2.
In short, the GS algorithm gives much stronger attacks on principal ideal lattices than we currently
have on general ideal lattices (albeit still exponential time for small approximation factors).

Theorem 8. Let T'(n,d,~y) denote the (worst-case) complexity of computing a y-approzimate short-
est vector in the lattice L(B), where B is the HNF basis B of an n-dimensional lattice of determinant
at most d. Computing a y-approrimate shortest vector in the lattice L(B), where B is a HNF basis
of a principal ideal lattice T of norm d in the ring of integers Z[x]/®m(x) of the m-th cyclotomic
field, has worst-case complexity at most poly(m,logd) + T(p(m)/2,d,~/2).

Proof. Let 7, = (u) be the ideal lattice for which we want to solve approximate-SVP, presented
as a Z-basis of {b;};c,) With b; = u-a; and a; € R. Formally set v = Ng/g(u) - (u/@) — that is
v is essentially the fraction u/u, except that we multiply by an appropriate integer to eliminate
denominators and ensure v € R. Observe that, from B, we can compute both a basis of Z,, = (v)
and also the term v - v = NK/Q(u)z. Use the GS algorithm to recover v (and hence u/u) in
polynomial time.

From u/@ and B, compute a Z-basis C' = {¢; = b;(1 + u/u)};c[,) of the principal ideal lattice
Tusw = (u+1). Observe that u+1 is in the index-2 real subfield K+ = Q({, +¢,'). Project the
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basis C' down to a n/2-dimensional basis C+ of the ideal Ty g g+ = Zura N K T C Og+. Observe
that C+ is a set of the form {(u+1) -r:r € Og+}. Multiply each of the elements in Ci+ by
u/(u+ 1) to get a basis B+ = {u-r:r € Og+} of the lattice A = L(Bg+).

By Lemma 7, A has a nonzero vector of length at most 2A1(Z). Therefore, we can solve ~-
approximate-SVP in Z by solving 7/2-approximate-SVP in A, proving the theorem. O

Note that non-principal ideal lattices, which in general can be expressed in terms of two gener-
ators, do not appear to be vulnerable to this dimension-halving attack.

The params in our constructions implicitly reveal principal ideal lattices — e.g., the lattice
<h,£ . g“*1> will likely be generated as an R-linear combination of the terms h, -b%/g and h, - b5 /g
that can be computed from params. Therefore, we recommend using R of degree twice what one
would normally use for general ideal lattices.

Previous schemes have also used, or raised the possibility of using, principal ideals, including
fully homomorphic encryption schemes [Gen09, SV10, GH11], homomorphic signatures schemes
[BF11], and key agreement schemes [Buc91].
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A Generalizing Graded Encoding Systems

Here we generalize the definitions of graded encodings schemes from Section 2.2 to deal with the
“asymmetric case”, where there are many different “level-one sets” (corresponding to the many
different source groups). We view the different level-one sets as separate dimensions, and corre-
spondingly replace the index i from the symmetric case by an index-vector v € N™ (with N the
natural numbers and 7 the equivalent of the number of different groups). The different level-one
set correspond to the standard unit vectors e;, and an encoding of « € R relative to the index e;
(i.e., an element a € Sé?)) is playing a role analogous to « - g; in asymmetric multilinear maps.

Note that in our case we can have 7 “different groups” and yet we can multiply upto some
number k of different encodings, potentially x # 7. Hence we can also get a mix of the symmetric
and asymmetric cases. If uy,...,u, are encodings of a, ..., € R relative to indexes vy,...,v, €
N7, respectively, then u* = u; X - -+ X u, is an encoding of the product a* =[], oy € R relative to
the sum of the indexes v =) v; € N".

For this general setting, we replace the parameter x by a subset A C N7 that includes the
indexes for which we can get valid encodings, and we can have a subset of indexes where we can
test for zero. Of course, we preclude encoding “above the zero-testing levels”, since for those
levels we cannot check equality of encodings. Hence the zero-test indexes implicitly define also the
subset A. We begin by formalizing the notions of “above” and “below” for our indexes, which is
defined entry-wise.

Definition 8 (Partial order on N7). For an integer 7 > 0 and two vector v,w € N7, we define
v<w & v[j] <w[j] forallj=1,2,...,7T.
As usual, we have v < w if v < w and v # w.

For an arbitrary subset of indexes T' C N™ we denote the set of indexes “below T” as:

A(T) o {veN: JweT st v<w}

We can now extend Definition 2 to the asymmetric case by defining T-graded encoding systems,
where we think of 1" as the subset of indexes that admit zero-testing.

Definition 9 (7-Graded Encoding System). Let T' C N7 be a finite set (for some integer T > 0),

and let R be a ring. A T-Graded Encoding System for R is a system of sets S = {Sl(,a) c {0,1}*:
v € A(T),« € R}, with the following properties:

1. For every fixed index v € A(T), the sets {Sl(,a) : o € R} are disjoint (hence they form a
partition of S e Ua Sz(,a)).

2. There are binary operations ‘“+’ and ‘-’ (on {0,1}*) such that for every ay,as € R, every
v € A(T), and every u; € S,(,al) and ug € 51(,0‘2), it holds that
(a1+a2) (a1—a2)

u1 + ug € Sy and up —ug € Sy (4)

where a1 + oo and a1 — o are addition and subtraction in R.
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3. There is an associative binary operation ‘X’ (on {0,1}*) such that for every a;,as € R, every
v1,v2 with vi + vy € A(T), and every uy € 51(,01‘1) and uy € 51(,32), it holds that

Ul X U € S(al.(m). (5)

v1t+v2

Here aq - ag is multiplication in R, and v + va is vector addition in N7,

Clearly, Definition 9 implies that if we have a collection of n encodings u; € Sq(,f‘i) ,i=1,2...,n,
then as long as ), v; € A(T) we get ug X -+ X u, € Sgivo_“). We note that symmetric k-multilinear

maps as per Definition 2 correspond to {k}-graded encoding systems (with 7 = 1), the asymmetric
bilinear case corresponds to {(1,1)}-graded systems (with 7 = 2), etc.

A.1 Efficient Procedures, the Dream Version

As before, we first describe a “dream version” of the efficient procedures and then explain how to
modify them to deal with technicalities that arise from our use of lattices in the realization.

Instance Generation. The randomized InstGen(l’\7 7,T) takes as inputs the parameters A, 7 the
subset T' C N7. It outputs (params, p,:), where params is a description of a T-Graded Encod-
ing System as above, and p,; is a set of zero-test parameters for the indexes in 7.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a € S(()a) for a

nearly uniform element o €z R. (Note that we require that the “plaintext” a € R is nearly
uniform, but not that the encoding a is uniform in S(()a).)

Encoding. The (possibly randomized) enc(params, v, a) takes a “level-zero” encoding a € S(()a) for

some a € R and index v € A(T), and outputs the “level-v” encoding u € Sz(,a) for the same a.

Addition and negation. Given params and two encodings relative to the same index, u; € Sz(,al)

and ug € S,(,OQ), we have add(params, i, u1, uz) = ujtus € Sf,al+a2), and sub(params, i, u1, uz) =
Ul + ug € S£a1+a2),
Multiplication. For uq € Sq(,?l), ug € SSQ‘” with v1+vg € A(T), we have mul(params, vy, u1, va, ug) =

a1-az
U1 X Uy € S£1+v2).

Zero-test. The procedure isZero(params,v,u) output 1 if v € T and u € Sq(,o) and 0 otherwise.
Note that in conjunction with the subtraction procedure, this lets us test if ui, us € S, encode
the same element o € R.

Extraction. This procedure extracts a “canonical” and “random” representation of ring elements
from their level-v encoding. Namely ext(params, p,, u) outputs (say) s € {0,1}*, such that:

(a) Forany a € R, v € T and two uy, uy € Sq(,a), ext(params, p,¢, v, u1) = ext(params, p,¢, v, u2),

(b) For any v € T, the distribution {ext(params, p,,v,u) : a €gr R,u € 51(,&)} is nearly uni-
form over {0, 1}
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A.2 Efficient Procedures, the Real-Life Version

As before, our real-life procedures have noise bounds and we are only ensured of their properties
when the bounds are valid and small enough. Also as before, we relax the requirements on the
zero-test and the extraction routines, as we now describe.

Zero-test. We sometime allow false positives for this procedure, but not false negatives. Namely,
isZero(params, p,, v,u) = 1 forevery v € T and u € Sz(,o), but we may have isZero(params, p,, v, u) =
1 also in other cases. Again our weakest functionality requirement that we make is that for

a uniform random choice of & € R, we have for every v € T

PrR [EI u € Si(,a) s.t isZero(params, p,, v, u) = 1| = negligible(\). (6)
aER

Additional requirements are considered security features (that a scheme may or may not
possess), and are discussed later in this section.

Extraction. Our construction from Section 4 does not support full canonicalization. Instead, we
settle for ext(A, p,, v, u) that has a good chance of producing the same output when applied
to different encoding of the same elements. Specifically, we replace properties (a)-(b) from
above by the weaker requirements:

(a') For a randomly chosen a < samp(params) and every v € T, if we run the encoding
algorithm twice to encode a at level v and then extract from both copies then we get:

a <— samp(params)
uj < enc(params, v, a) > 1 — negligible(\).
ug <— enc(params, v, a)

ext(params, p,, v, u1)
= ext(params, Pzt, v, u2)

(b’) The distribution {ext(params, p,:,v,u) : a < samp(params),u < enc(params,v,a)} is
nearly uniform over {0,1}*.

We typically need these two conditions to hold even if the noise bound that the encoding
routine takes as input is larger than the one output by samp (upto some maximum value).

A.3 Hardness Assumptions

The DDH analog for this case says that it is hard to recognize encoding of products, except relative
to indexes in A(T"). One way to formalize it is by letting the adversary choose the level “above T”
on which it wants to be tested. This is formalized by the following process. (Below we suppress
the noise bounds for readability):

1. (params,p,) « InstGen(1*, 7, 7)

2. v,v* < A(params, p,) // veT and v < vx

3. Fori=1,...,7,for j =1,...v}:

4. Choose a; ; - samp(params) // level-0 encoding of random «; j €g R

5. Set w; j < enc(params, e;,a; ;) // encoding of ; ; w.r.t the i’th unit vector
6. Set a=1[[,;ai, // level-0 encoding of the product

7. Choose a < samp(params) // level-0 encoding of a random element

8. Set u < enc(params, v, a) // level-k encoding of the product

9. Set @ < enc(params, v, a) // level-k encoding of random

53



The adversary A then gets all the u;;’s and either @ or @, and it needs to guess which is
the case. It is considered successful if the guess is correct and in addition v € T and v < vx.
The generalized GDDH problem is hard if any polynomial-time adversary can only succeed with
probability negligibly larger than 1/2.

Zero-test security. Zero-testing security is defined exactly as in the symmetric case, except that
we requite it relative to all the indexes v € T'.
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