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Abstract. In this paper, we describe a polynomial time cryptanalysis of the (approxi-
mate) multilinear map proposed by Coron, Lepoint, and Tibouchi in Crypto13 (CLT13).
This scheme includes a zero-testing functionality that determines whether the message
of a given encoding is zero or not. This functionality is useful for designing several
of its applications, but it leaks unexpected values, such as linear combinations of the
secret elements. By collecting the outputs of the zero-testing algorithm, we construct
a matrix containing the hidden information as eigenvalues, and then recover all the se-
cret elements of the CLT13 scheme via diagonalization of the matrix. In addition, we
provide polynomial time algorithms to directly break the security assumptions of many
applications based on the CLT13 scheme. These algorithms include solving subgroup
membership, decision linear, and graded external Diffie–Hellman problems. These al-
gorithms mainly rely on the computation of the determinants of the matrices and their
greatest common divisor, instead of performing their diagonalization.

Keywords. Multilinear maps, Graded encoding schemes, Decision linear problem,
Subgroup membership problem, Graded external Diffie–Hellman problem.

1. Introduction

Multilinear maps are very powerful tools in cryptography. Following their use in con-
structing two interesting applications: a one-round non-interactive multiparty key ex-
change protocol and a broadcast encryption schemewith short keys [7], multilinearmaps

∗A preliminary version of this paper appeared in the Proceedings of EUROCRYPT 2015, Lecture Notes
in Computer Science 9056, Springer-Verlag [11].
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have yielded many remarkable cryptographic applications. However, without the real-
ization ofmultilinearmaps, the promising applications would have been only ambiguous
implementations. As a first breakthrough in the generation of multilinear maps, Garg,
Gentry, and Halevi introduced the concept of graded encoding schemes as a variant of
multilinear maps and described a candidate approximate construction (GGH13) using
ideal lattices. Shortly after this, Coron, Lepoint, and Tibouchi [15] proposed another po-
tential graded encoding scheme (CLT13) over integers. These graded encoding schemes
expanded their applications such as general-purpose obfuscation, functional encryption,
and others [1,3,5,6,22,24–26,30,36,37].
The security of the applications based on the graded encoding schemes relies on

the presumed hardness of the problems such as the graded decision Diffie–Hellman
(GDDH), subgroup membership (SubM), decision linear (DLIN), and graded external-
decisionDiffie–Hellman (GXDH) problems. However, it was showed that when instanti-
ated in the GGH13 scheme with some distinct encodings termed as low-level encodings
of zero, the SubM, DLIN, and GXDH problems could be solved in polynomial time
by the so-called zeroizing attack [20, Sec. 6] (also called the weak discrete logarithm
attack). Subsequently, this approach became potentially more powerful: Hu and Jia ex-
tended it and proved that the GDDH problem could also be solved in polynomial time
[28].
In contrast, the CLT13 scheme was not apparently susceptible to the zeroizing at-

tack. It was believed that the problems, including SubM, DLIN, GXDH, and GDDH,
were hard problems in the CLT13 scheme. Thus, the CLT13 scheme is considered as
the only candidate for implementing applications that require the presumed hardness of
the problems as the security basis. Such applications include key-homomorphic pseudo-
random functions and a one-round group password-based authenticated key exchange
[1,3,5,6,15,22,30,36]: The widespread use of the CLT13 scheme has raised concerns
about its security because its presumed hardness has not been proven for standard as-
sumptions.

Our Contributions In this paper, we describe a polynomial time cryptanalysis of the
CLT13 scheme. This algorithm employs low-level encodings of zero. Our algorithm is
applicable until such encodings of zero are used for the “rerandomization procedure”
in the CLT13 scheme. We then show that this algorithm allows the recovery of all the
secret parameters. Using these secret parameters, we can eventually solve the SubM,
DLIN, GXDH, and GDDH problems.
Apart from an indirect attack, we also provide polynomial time algorithms for an-

alyzing three related problems in the CLT13 scheme: the SubM, DLIN, and GXDH
problems. Although these polynomial time algorithms are not as efficient as the previ-
ous ones because of their computational complexity, they are of significance in that they
can be directly applied to the problems.
Consequently, there is no direct construction of secure multilinear maps, for which

any of the GDDH, SubM, DLIN, and GXDH problems are hard.1 Several cryptographic
applications are impacted,e.g., all the constructions of [3,22,30,36], GPAKE construc-

1For multilinear maps constructed by the candidate obfuscation schemes, assessing the hardness of these
computational problems is an interesting open problem.
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tion in [1] for more than three users, one of the two constructions of password hashing
in [5], and one of the key-homomorphic PRF constructions in [6].

Technical OverviewWe describe two independent methods for solving the problems as-
sociated with the CLT13 scheme. The first method allows for determining all the secret
elements of the CLT13 scheme, and the second one solves each problem directly. We
name these two techniques as the eigenvalue technique and determinant technique, re-
spectively, because the main part of each algorithm is the computation of the eigenvalues
and determinants, respectively.
Let pi be the secret distinct primes for 1 ≤ i ≤ n, and x0 equal

∏n
i=1 pi . We denote

p̂i = x0/pi for each i and P̂ = ∑n
i=1 p̂i . For integer vector r = (ri ) ∈ Z

n with ri � pi ,
a Chinese remainder encoding of r (referred as CRT-encoding) is defined as an integer,
denoted by CRT(pi )(ri ) ∈ (x0/2, x0/2]. This is congruent to integer ri in each modulo
pi . Informally, the setting of the CLT13 scheme is reduced to the following problem:
when we are given x0, P̂ , and polynomially many CRT-encodings of the integer vectors,
recover all the secret primes.
In [19],Galbraith,Gebregiyorgis, andMurphy introduced aCRT-approximate greatest

common divisor problem (CRT-ACD) problem. Herein, when given a multiple of x0,
written as x0 ·q0, and variants of CRT-encodings, x0 ·q j+CRT(pi )(ri j ), for polynomially
many j ≥ 1, find the secret primes, for which integers q j are sampled from some
distribution. Compared to the CRT-ACD problem, we consider q0 = 1 and q j = 0 for
all j ≥ 1. In addition, integer P̂ is given. Therefore, we call this problem as CRT-ACD
with an auxiliary input.

(1) Eigenvalue Technique Our main technique is to construct a diagonalizable matrix in
Q whose eigenvalues are ri for some CRT-encoding, CRT(pi )(ri ). Then, by computing
the greatest common divisor (gcd) between x0 and (CRT(pi )(ri ) − ri ), we recover pi .

More precisely, under the condition that the magnitude of ri is sufficiently small, we
observe that

[P̂ · CRT(pi )(ri )]x0 =
n∑

i=1

ri · p̂i .

The equality holds over integers. According to the Chinese remainder theorem, the prod-
uct of the CRT-encodings yields a CRT-encoding in which the corresponding message
vectors are multiplied componentwise. Therefore, we can extend the observation to the
product of the CRT-encodings until each component of the message vector is much
smaller than pi .
For severalCRT-encodingsCRT(pi )(ri, j ), letw j,k andw′

j,k be integers [CRT(pi )(ri, j )·
CRT(pi )(ri,1)·CRT(pi )(ri,k)· P̂]x0 and [CRT(pi )(ri, j )·CRT(pi )(ri,k)· P̂]x0 , respectively.
Then, by spanning indices j, k ∈ {1, . . . , n}, we can construct matrices W = (w j,k) j,k
and W′ = (w′

j,k) j,k , which can be written as

W = R · diag(ri,1) · R′ and W′ = R · R′

for R = (ri, j )i, j , R′ = ( p̂i · ri,k)Ti,k and diagonal matrix diag(ri,1), whose i-th diagonal
entry is ri,1. By assuming that matrices R and R′ are invertible, we obtain matrix Y in
the following form:
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Y = W · (W′)−1 = R · diag(ri,1) · (R)−1,

whose eigenvalues are exactly the set, {r1,1, . . . , rn,1}.Hence,we can compute the eigen-
values in polynomial time fromY. As mentioned above, by computing gcd(x0,CRT(pi )

(ri,1) − ri,1), we can recover secret prime pi for each i . We refer to Sect. 3 for the
application of this strategy in the CLT13 scheme.

(2)Determinant Technique For the SubM, DLIN, and GXDH problems, the determinant
technique could be directly used to analyze the problems instead of performing the
eigenvalue-based analysis. For example, we consider a simplified SubM problem: given
two CRT-encodings A = CRT(pi )(ri ) and B = CRT(pi )(r

′
i ), where ri and r ′

i are ρ-bit
integers much smaller than pi . We need to distinguish whether ri and r ′

i are co-prime
for all i .

Given two CRT-encodings A = CRT(pi )(ri ) and B = CRT(pi )(r
′
i ), our goal is to

construct twomatrices overZwhose determinants are multiples of
∏n

i=1 ri and
∏n

i=1 r
′
i ,

respectively. Then, one can solve this problem by computing the gcd.
More precisely, in the construction ofW, we can build two matricesWA andWB by

replacingCRT(pi )(ri,1)with A and B, respectively. Therefore, the determinants of these
matrices are det(WA) = det(R) · det(R′) · ∏n

i=1 ri and det(WB) = det(R) · det(R′) ·∏n
i=1 r

′
i , respectively. Next, we consider the value of det(WA)/ gcd(WA, WB). If ri and

r ′
i have a common factor for all i , then this term is smaller than 2n·(ρ−1). Otherwise, this
value is not smaller than 2n·(ρ−1), and thus, we can solve the simplified SubM problem.
This method can also be applied to the DLIN and GXDH problems. We refer to Sect. 4
for more details.

Related and Follow-upWorksAfter the preliminary investigations of this workwere pub-
lished in the IACR Cryptology ePrint Archive and the proceedings of the Eurocrypt’15
conference, the attack was extended and the CLT13 scheme was transformed to prevent
the attack. Our attack strongly relies on the fact that the low-level encodings of 0 are
published. In [8], Boneh, Wu, and Zimmerman first extended our attack without giving
the encoding of 0. Moreover, they described a modification of the CLT13 scheme to pre-
vent the extended attack. Additionally, an independent approach to immunize the CLT13
scheme against our attack was proposed by Garg, Gentry, Halevi, and Zhandry [23].2

Since then, Coron et al. [13] have extended the attack by using the so-called orthogonal
encodings. This work showed that the two immunizations were insecure. Apart from
these immunization works, a further modification of CLT13 was proposed by Coron,
Lepoint, and Tibouchi in Crypto’15 [17]. They claimed that our attack and the extended
attack were prevented because the modified scheme maintained underlying modulus x0
a secret, such that the zero-testing procedure depended on the secret values nonlinearly.
However, it was also shown to be insecure by Cheon, Fouque, Lee, Minaud, and Ryu in
[10], who demonstrated the recovery of x0.

Nonetheless, for the security of the general-purpose obfuscation schemes in theCLT13
scheme, one of the promising applications still remains an open problem because the
schemes are neither given the encodings of zero nor are subjected to the extended attacks.

2After this work, Garg et al. [24] replaced the underlying multilinear map with a new scheme suggested
by Coron, Lepoint, and Tibouchi in Crypto’15 [17].
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Thereafter, Coron, Lepoint, and Tibouchi provided a new analysis result [14] that could
enable one to break the polynomial time for several CLT13-based candidate obfuscations
with a distinct property called input partitionability in the CLT13 scheme [2,4,21,32,
33]. However, this property of input partitionability is not typically satisfied. It was
also suggested to convert any input-partitionable obfuscation scheme in the CLT13
scheme to a non-input-partitionable scheme [18]. In summary, the security of the general
obfuscations in the CLT13 scheme has not yet been clarified.

Notation. We use a ← A to denote the operation of uniformly choosing element
a from finite set A. We define [n] = {1, 2, . . . , n}. We let Zq denote ring Z/(qZ).
For pairwise co-prime integers p1, p2, . . . , pn and integers r1, r2, . . . , rn , we define
CRT(p1,p2,...,pn)(r1, r2, . . . , rn) (abbreviated as CRT(pi )(ri )) as the unique integer in
(− 1

2

∏n
i=1 pi ,

1
2

∏n
i=1 pi

]
which is congruent to ri mod pi for all i ∈ [n]. We use no-

tation [t]p for integers t and p to denote the reduction of t modulo p in the interval
(−p/2, p/2].

We use lower-case bold letters to denote the vectors, whereas we use the upper-case
bold letters to denote matrices. For matrix S, we denote the transpose of S by ST . We
define ‖S‖∞ = maxi

∑
j∈[n] |si j |, where si j is the (i, j) component of S. Finally, we

denote diag(a1, . . . , an) or diag(ai ) in the diagonal matrix with diagonal coefficients
equal to a1, . . . , an .

Organization In Sect. 2, we define the CRT-ACD problem and its analysis. In Sect. 3,
we recall the CLT13 scheme and adapt the analysis to it. In Sect. 4, we introduce three
related problems on the CLT13 scheme and their cryptanalyses. We conclude this paper
in Sect. 5.

2. CRT-ACD with an Auxiliary Input

In this section, we introduce and analyze the CRT-ACDproblem using an auxiliary input.
The approximate greatest common divisor problem (ACD) was initially introduced by
Howgrave-Graham [27] as was the problem of finding secret prime p given many near-
multiples of p. One of the promising applications of this problem is a homomorphic
encryption scheme [35]. The scheme offers conceptual simplicity compared to other
homomorphic encryption schemes based on lattice problems.
The ACD problem is naturally extended by using multiple primes rather than a single

one. Galbraith, Gebregiyorgis, and Murphy provided an informal definition of an ex-
tended ACD problem, which is called the CRT-ACD problem [19]. An instance of the
problem is an integer of the form piqi + ri for several primes pi . Therefore, it can be
defined by using the CRT. Cheon et al. provided a batch-homomorphic encryption [9]
based on the CRT-ACD problem. For appropriate parameters, Galbraith et al. argued
that “it is an open problem to give an algorithm to solve the CRT-ACD problem that
exploits the CRT structure” [19].
In this section, however, we show that when some integer, called the auxiliary input,

is given, the CRT-ACD problem can be solved in polynomial time. Now, we define the
precise variant of the CRT-ACD we consider.
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Definition 1. (CRT-ACD with an auxiliary input) Let n, η, ε ∈ N and χε be a distri-
bution inZ∩(−2ε, 2ε). For given η-bit primes p1, . . . , pn , we define x0 = ∏n

i=1 pi and
p̂i = x0/pi for 1 ≤ i ≤ n. The sampleable CRT-ACD distribution Dχε,η(p1, . . . , pn)
is defined as

Dχε,η(p1, . . . , pn) = {CRT(pi )(ri ) | ri ← χε}.

The CRT-ACD problem with an auxiliary input is as follows: For polynomially many
given samples from Dχε,η(p1, . . . , pn), x0 and P̂ = CRT(pi )( p̂i ), the goal is to obtain
pi for all i .

Auxiliary input P̂ needs the distinct feature that it can be written as a summation of its
CRT components in Zx0 . A key observation is that the equation holds over the integers
when n + log n < η − 1. Extending this property, we obtain the following lemma.

Lemma 1. Let P̂ = CRT(pi )( p̂i ) and a = CRT(pi )(ri ) ← Dχε,η(p1, . . . , pn). As-
sume that ε + n + log n + 1 < η. Then, the following holds:

a · P̂ mod x0 = CRT(pi )(ri · p̂i ) =
n∑

i=1

ri · p̂i ,

Proof. The first equality is clear by the definition of the CRT. To show that the second
equality is correct, we consider the equation in each modulo pi . Then, the left-hand side
is ri · p̂i and the right-hand side is also ri · p̂i because p̂ j = 0 mod pi for j �= i . Finally,

the magnitude of
n∑

i=1
ri · p̂i is smaller than n · 2ε · 2(n−1)·η, which is less than 2n·(η−1)−1

under the condition, and thus, x0/2. Hence, based on the uniqueness ofCRT, the second
equality holds. �

This lemma transforms the modulus equation to an integer equation of r1, . . . , rn with
unknown coefficients p̂1, . . . , p̂n .
Our algorithm for solving CRT-ACD with an auxiliary input consists of two steps.

The first step is to construct a diagonalizable matrix inQ, whose eigenvalues are set {ri }
of someCRT-ACD sampleCRT(pi )(ri ). The next step is to recover ri by computing the
eigenvalues. Then, by computing the common divisor of CRT(pi )(ri ) − ri and x0, we
can obtain all pi .
We now describe the complete details of solving CRT-ACD with an auxiliary input.

2.1. Constructing Matrix Equations in Q

Suppose we are given 2n + 1 samples from distribution Dχε,η(p1, . . . , pn) as follows:

a j = CRT(pi )(ai, j ), b = CRT(pi )(bi ), ck = CRT(pi )(ci,k) for 1 ≤ j, k ≤ n.

For simplicity, we denote w j,k and w′
j,k by a j · b · ck mod x0 and a j · ck mod x0,

respectively.
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To adapt Lemma 1 to w j,k and w′
j,k under the condition 3ε + n + log n + 1 < η, we

have

w j,k =
n∑

i=1

ai, j · bi p̂i · ci,k = (
a1, j a2, j · · · an, j

)

⎛

⎜
⎜
⎜
⎝

b1 p̂1 0 · · · 0
0 b2 p̂2 · · · 0

0 0
. . . 0

0 0 · · · bn p̂n

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1,k
c2,k
...

cn,k

⎞

⎟
⎟
⎟
⎠

w′
j,k =

n∑

i=1

ai, j · p̂i · ci,k = (
a1, j a2, j · · · an, j

)

⎛

⎜
⎜
⎜
⎝

p̂1 0 · · · 0
0 p̂2 · · · 0

0 0
. . . 0

0 0 · · · p̂n

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1,k
c2,k
...

cn,k

⎞

⎟
⎟
⎟
⎠

By collecting these values, we can construct two matrices W = (w j,k) and W′ =
(w′

j,k) ∈ Z
n×n , which can be written as

W = AT · diag(b1 p̂1, . . . , bn p̂n) · C,

W′ = AT · diag( p̂1, . . . , p̂n) · C

for AT = (ai, j ) and C = (ci,k) ∈ Z
n×n . Suppose matrices A and C are invertible in Q.

We compute (W′)−1 over Q and the following matrix:

V = W · (W′)−1 = AT · diag(b1, . . . , bn) · (AT )−1.

2.2. Disclosing all the Secret Quantities

The eigenvalues ofmatrixV discussed in Sect. 2.1 are exactly those in B = {b1, . . . , bn}.
Set B can be computed in polynomial time in η, n, and ε fromV by computing the roots
of the characteristic polynomial.
Prime pi is a common factor to both (b − bi ) and x0, which have other common

factors if and only if b j = bi for some j ∈ {1, . . . , n}. Hence, if bi s are distinct, we can
obtain all secret integers p1, . . . , pn .

Remark Two conditions are required for our algorithm to work appropriately. The first is
that matrices A and C are invertible, and the other is that bi �= b j for all 1 ≤ i < j ≤ n.
The probability that each condition is satisfied depends on distributionχε andmatrix size
n. Because the two conditions are independent and as they depend on different variables,
our attack succeeds in obtaining the probability of the product of the two probabilities.
For example, let χε be a uniform distribution in (−2ε, 2ε), and let n be asymptotically
a polynomial of ε, i.e., n = poly(ε). The first probability is overwhelming with respect

to ε [31, Lem. 1], whereas the second probability is equal to
n!·(2·2ε−1

n )
(2·2ε−1)n , where ! is the

factorial operator and
(2·2ε+1

n

)
is the binomial coefficient. The latter probability is also

overwhelming with respect to ε, where n = poly(ε).
Let fV be a characteristic polynomial ofmatrixV. Because each root bi is less than 2ρ ,

we consider prime p0 that is larger than 2ρ and find roots x such that fV(x) mod p0. This
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reveals the original roots of fV in O(M(n(ρ + log n)) · (ρ + log n) · log n) = Õ(n · ρ2)

by Rabin’s algorithm [34], where M(t) is an upper bound to the number of bit operations
required to multiply two t-bit numbers.
Because our attack consists of a matrix multiplication, computing a characteristic

polynomial and finding the roots of the polynomial, the complexity of the first two
algorithms is bounded by Õ(nω · log x0) = Õ(nω · n · η) and that of the last one is
bounded by Õ(n · ρ2) with ω ≤ 2.38. This implies that the overall cost is bounded by
Õ(nω+1 · η), with ω ≤ 2.38.3 Hence, we obtain the following result:

Theorem 1. Let Uε be the uniform distribution in (−2ε, 2ε)∩Z. When ε+n+ log n+
1 < η, n = poly(ε), and given O(n) CRT-ACD samples from DUε,η(p1, . . . , pn) with

x0 =
n∏

i=1
pi , and P̂ = CRT(pi )( p̂i ), One can recover all secret primes p1, . . . , pn in

time Õ(nω+1 · η) with ω ≤ 2.38 and the overwhelming probability with respect to ε.

3. Application to the CLT13 Multilinear Map

We first recall the CLT13 multilinear map and then describe the attack. We refer to the
original paper [15] for a complete description.

3.1. Candidate Multilinear Map Over the Integers

The CLT13 scheme requires the following parameters:

λ: the security parameter
κ: the multilinearity parameter
ρ: the bit length of the randomness used for the encodings
α: the bit length of the message slots
η: the bit length of secret primes pi
n: the number of distinct secret primes
τ : the number of level-1 encodings of zero in public parameters
�: the number of level-0 encodings in public parameters
ν: the bit length of the image of the multilinear map
β: the bit length of the entries of the zero-test matrix H

Coron et al. suggested setting the parameters such that the following conditions were
satisfied:

• ρ = �(λ): to avoid a brute force attack (see also [29] for a constant factor improve-
ment).

• α = λ: so that the ring of messages Zg1 × . . . × Zgn does not contain a small
subring Zgi .

• n = �(η · λ): to prevent the lattice reduction attacks [15, Sec. 5].
• � ≥ n · α + 2λ: to be able to apply the leftover hash lemma from [15, Lem. 1].

3If the determinant of neitherA orC is not a multiple of p0, the same result can be obtained by performing
the procedure of Sect. 2.1 modulo p0. In this case, the total complexity becomes Õ(nω · ρ) [16].
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• τ ≥ n · (ρ + log2(2n)) + 2λ: to apply the leftover hash lemma from [15, Sec. 4].
• β = �(λ): to avoid the so-called gcd attack [29].
• η ≥ ρκ +α+2β +λ+8, where ρκ is the maximum bit size of the level-κ encoding
of random ri . When computing the product of κ level-1 encodings and an additional
level-0 encoding, one obtains ρκ = κ ·(2α+2ρ+λ+2 log2 n+2)+ρ+ log2 �+1.

• ν = η − β − ρ f − λ − 3: to ensure the zero-test correctness.

Instance generation (params,pzt ) ← InstGen(1λ, 1κ ). We set the scheme parame-
ters as explained above. For i ∈ [n], we generate η-bit primes pi , α-bit primes gi , and
compute x0 = ∏

i∈[n] pi . Sample z ← Zx0 . Let � = (πi j )i, j ∈ Z
n×n with πi j ←

(n2ρ, (n + 1)2ρ) ∩ Z if i = j , otherwise πi j ← (−2ρ, 2ρ) ∩ Z. For i ∈ [n], we gen-
erate ri ∈ Z

n by choosing randomly and independently in the half-open parallelepiped
spanned by the columns ofmatrix� and denote by ri j the j-th component of ri . Generate
H = (hi j )i, j ∈ Z

n×n,A = (ai j )i, j ∈ Z
n×� such that H is invertible and ‖HT ‖∞ ≤ 2β ,

‖(H−1)T ‖∞ ≤ 2β for i ∈ [n], j ∈ [�], m ai j ← [0, gi ).4 Then, define:

y = CRT(pi )

(
ri gi + 1

z

)

, where ri ← (−2ρ, 2ρ) ∩ Z for i ∈ [n],

x j = CRT(pi )

(
ri j gi
z

)

for j ∈ [τ ],

� j = CRT(pi )

(
πi j gi
z

)

for j ∈ [n],
x ′
j = CRT(pi )(x

′
i j ), where x ′

i j = r ′
i j gi + ai j and

r ′
i j ← (−2ρ, 2ρ) ∩ Z for i ∈ [n], j ∈ [�],

(pzt ) j =
[

n∑

i=1

[
hi j · zκ · g−1

i

]

pi
· p̂i

]

x0

for j ∈ [n].

Output params = (n, η, α, ρ, β, τ, �, ν, y, {x j }, {x ′
j }, {� j }, s) and pzt . Here, s is a

seed for a strong randomness extractor, which is used for an “extraction” procedure. We
do not recall the latter, as it is not necessary to describe our attack.
Sampling level-zero encodings c ← samp(params). For 1 ≤ j ≤ �, sample b j ←
{0, 1} and compute c =

[∑�
j=1 b j · x ′

j

]

x0
. Note that themessage of an encoding sampled

from this procedure is unknown.
Encodings at level-1 c′ ← enc(params, c). Given a level-zero encoding c, compute a
level-1 encoding of the same message by computing c′ = [c · y]x0 .
Re-randomizing level-1 encodings c′ ← reRand(params, c). For j ∈ [τ ], i ∈ [n],
sample b j ←{0, 1}, b′

i ←[0, 2μ)∩Z, withμ = ρ+α+λ. Return c′ = [
c+∑

j∈[τ ] b j ·x j
+ ∑

i∈[n] b′
i · �i

]
x0
. Note that this is the only procedure in the CLT13 scheme that uses

x j ’s.5

4Matrix H is generated in a specific approach. We refer to the original paper [15].
5This procedure can be adapted to higher levels 1 < k ≤ κ by publishing the appropriate quantities in

params.
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Adding and multiplying encodings Add(c1, c2)=[c1 + c2]x0 andMul(c1, c2)=[c1 · c2]x0 .
Zero-testing isZero(params, pzt , uκ)

?= 0/1. Given a level-κ encoding c, return 1 if
‖[pzt · c]x0‖∞ < x0 · 2−ν , and 0 otherwise.
Coron et al. also described a variant in which only one such zero-testing parameter,

pzt was given rather than n of them (see [15, Se. 6]). In [26, App. B.3], Gentry, Lewko,
andWaters described an asymmetric version of the construction, which we briefly recall
in Sect. 4. Our attack can also be adapted to these variants.

3.2. Zeroizing Attack on CLT13

In this section, we adapt the analysis of CRT-ACD with an auxiliary input to the CLT13
scheme. The instances of the problem and CLT13 scheme are quite similar. The encod-
ings of the CLT13 resemble the instances of the problem, except for secret constant z.
Zero-testing parameters (pzt ) j are also similar to auxiliary input P̂ , except for constant
[zκ/CRT(pi )(gi )]x0 . Therefore, we only consider the zero-testing value of the encodings
of zero, such that the constant is canceled.
More precisely, let a be a top-level encoding of zero,written as a = CRT(pi )(ri gi/z

κ).
Hereafter, becausewe use only one zero-testing parameter, without the loss of generality,
we denote (pzt )1 as pzt . Similar to Lemma 1, we have

pzt · a mod x0 = CRTpi ( p̂i · hi · ri ) =
n∑

i=1

p̂i · hi · ri

until the last quantity has a magnitude smaller than x0/2. Under the zero-testing condi-
tions, it is typically true for the valid top-level encodings of zero. Next, by replacing a
with κ-level encodings of zero πu · x ′

1 · πv · yκ−2 or πu · πv · yκ−2 for 1 ≤ u, v ≤ n in
the above equation, we have:

wuv = �u · x ′
1 · �v · yκ−2 · pzt mod x0

=
n∑

i=1

p̂i · hi · gi · πiu · (ri gi + 1)κ−2 · x ′
i1 · πiv

=
n∑

i=1

πiu · x ′
i1 · h′

i · πiv, and

w′
uv = �u · �v · yκ−2 · pzt mod x0 =

n∑

i=1

p̂i · hi · gi · πiu · (ri gi + 1)κ−2 · πiv

=
n∑

i=1

πiu · h′
i · πiv,

where h′
i = p̂i ·hi ·gi ·(ri gi +1)κ−2. By spanning 1 ≤ u, v ≤ n, we obtain the following

matrices W and W′:
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W = �T · diag(x ′
11 · h′

1, . . . , x
′
n1 · h′

n) · �,

W′ = �T · diag(h′
1, . . . , h

′
n) · �,

for � = (πik)i,k . As in Sect. 2.2, we can recover {x ′
11, . . . , x

′
n1} by computing the

eigenvalues ofW ·W′−1. Hence, we can compute all secret pi by computing gcd(x ′
1 −

x ′
i1, x0).
Consequently, we need W′ and W to be invertible. We argue that this case has a

high probability. We prove it for W. Note first that x ′
i1 and h′

i are all nonzero, with
overwhelming probability (if the integers are zero, w j,k is a multiple of pi , and thus,
one can recover the factor via gcd(x0, w j,k)). However, matrix � is invertible by design
[15, Fact 1].
Because our algorithm consists of computing an inverse matrix and eigenvalues, the

total cost is bounded by Õ((nω log x0)) = Õ(κω+2λ2ω+3), with ω ≤ 2.38.
After we know all the pi , we have x j/y = ri j gi/(ri gi +1) mod pi . As the numerator

and denominator are coprimes and very small compared to pi , they can be recovered by
the rational reconstruction algorithm. Hence, we obtain (ri j gi ) for all j . The gcd of all
the (ri j gi ) yields gi . Thus, we can also recover all the ri j and ri . As x1 = ri1gi/z mod pi
and the numerator is known, we can recover z mod pi for all i . Hence, z mod x0. hi j
can then be recovered along with r ′

i j and ai j .

4. Subgroup Membership, Decision Linear, and Graded External Diffie–Hellman
Problems

We start by defining the SubM, DLIN, and GXDH problems associated with the CLT13
scheme. We then describe how to solve these problems in polynomial time. The attack
procedure consists of two steps. First, in Sect. 4.1, we discuss how to recover

∏
i gi ,

which is an order of the message space. This is a common procedure for solving the
SubM and DLIN problems. Next, in Sects. 4.2, 4.3 and 4.4, we present the value for
solving the SubM, DLIN, and GXDH problems.
We recall primes {gi } described in Sect. 3.1. Let G = Zg1 × . . . × Zgn and its

subgroup G ′ = {0} × Zg2 × . . . × Zgn . We let enc1(m) denote a level-1 encoding of
m = (m1, . . . ,mn) ∈ G generated by the procedure inSect. 3.1. Then, it canbewritten as
CRT(pi )(

ri ·gi+mi
z ) for some integer ri . For integers L > 0, we letRk j (GL×L) denote the

set of L×Lmatrices overG of rank j .Here,wedefine rankofmatrix (m(u,v))u,v ∈ GL×L

as the maximum of the ranks of matrices (m(u,v)
i )u,v , where m

(u,v)
i is the i-th entry of

m(u,v) ∈ G. Then, the SubM and DLIN problems are defined as follows.

Definition 2. (Subgroup Membership Problem) Let I, λ, and κ generate params, pzt .
{enc1(m′

i ) : i ∈ [I ]}, where the m′
i s are uniformly and independently sampled in strict

subgroup G ′ of G. Given params, pzt , {enc1(m′
i ) : i ∈ [I ]}, and M = enc1(m), It is

determined whether m is sampled uniformly in G ′ or G.
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Definition 3. (L-Decisional Linear Problem) Given λ and κ , params and pzt are
generated using InstGen. Define N = ∏

i gi . Given params and pzt , the goal is to
distinguish between the distributions.

{(enc1(m(i, j)))i, j }(m(i, j))i, j←RkL−1(GL×L ) and {(enc1(m̃(i, j)))i, j }(m̃(i, j))i, j←RkL (GL×L ).

In the constructions in [1], the authors considered the following particular case of the
L-DLINproblem.Theproblemwasdefined for params andpzt aswell as {enc1(ai )}i∈[L]
and {enc1(aibi )}i∈[L] for some uniform and independent a1, . . . , aL , b1, . . . , bL ∈ G.
Given an encoding of enc1(m), the goal was to distinguish whether m was uniformly
sampled from G or m = b1 + . . . + bL . This can be restated as a distinct case of
Definition 3, as it requests to assess whether the matrix below is full rank.

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1b1 a1 0 . . . 0
a2b2 0 a2 . . . 0

...

aLbL 0 0 . . . aL
m 1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Next, to describe the GXDH problem, we briefly recall the asymmetric multilinear
map variant of CLT13 [26, App. B.3].

Instance generation (params,pzt ) ← InstGen(1λ, 1κ ). The parameter settings of
pi , gi , x0, {x ′

j }, and H are as in the original scheme. Let �(t) = (π
(t)
i j )i, j ∈ Z

n×n

with π
(t)
i j ← (n2ρ, (n+1)2ρ)∩Z if i = j , otherwise π

(t)
i j ← (−2ρ, 2ρ)∩Z for t ∈ [κ].

For 1 ≤ t ≤ κ , zt is uniformly sampled in Zx0 . Then define, for all 1 ≤ t ≤ κ:

y(t) = CRT(pi )

(
r (t)
i · gi + 1

zt

)

, where r (t)
i ← (−2ρ, 2ρ) ∩ Z, for 1 ≤ i ≤ n,

x (t)
j = CRT(pi )

(
r (t)
i j · gi
zt

)

, for 1 ≤ j ≤ τ,

�
(t)
j = CRT(pi )

(
π

(t)
i j · gi
z

)

for j ∈ [n].

Further, we define:

(pzt ) j =
n∑

i=1

hi j ·
⎛

⎝
∏

1≤t≤κ

zt · g−1
i mod pi

⎞

⎠ · p̂i mod x0, for 1 ≤ j ≤ n.

Output params = (n, η, α, ρ, β, τ, �, ν, {y(t)}, {x (t)
j }, {x ′

j }, {�(t)
j }, s) and pzt . From

now on, we use enct (m) to denote encoding CRT(pi )(
ri ·gi+mi

zt
). We now define the

GXDH problem in the CLT13 scheme.
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Definition 4. (Graded External DDH Problem) Given λ and κ , params and pzt are
generated using InstGen. Given params, pzt , and enct (a),enct (b) and enct (c) with
a, b ← G and for any integer t ∈ [κ], the goal is to decide whether c = a · b or c is
uniformly and independently sampled in G.

This can be regarded as a variant of the 2-DLIN problems by distinguishing the following
distributions:

{(
enct (c) enct (a)

enct (b) enct (1)

)}

and

{(
enct (ab) enct (a)

enct (b) enct (1)

)}

,where c ← G.

Throughout this section, as in Sect. 3.2, we only use one zero-testing parameter; we
denote (pzt )1 as pzt .
Our main strategy to solve the three related problems in the CLT13 scheme is as

follows: For a given level-1 encoding enc1(m) = CRT(pi )(ri · gi +mi ) (or enct (m) of
the asymmetric multilinear map), we first suggest an approach for constructing integral
matrix Wm ∈ Z

n×n , such that Wm = X · diag(r1 · g1 + m1, . . . , rn · gn + mn) · R for
some invertible matrices X and R ∈ Z

n×n . Then, by using matrix Wm , we construct a
matrix whose determinant is related to an order of the message space,

∏
i gi . Hence, by

computing the determinant of the matrix, we can solve each problem.
More precisely, the related problems can be seen as follows:

SubM: Given encoding enc1(m), it is determined whether m ← G ′ or not.
L-DLIN: Given L × L matrix of level-1 encodings of (m(i, j))i, j , we determine
whether the message matrix is of full rank or not.

GXDH: Given a 2×2 matrix of level-1 encodings of

(
c a
b 1

)

, we determine whether

the matrix is of full rank or not.

In the case of the SubM problem, if m is sampled from G ′, the value of det(Wm) has
a non-trivial factor of

∏
gi . Otherwise, the value does not have a common factor. In the

case of the L-DLIN problem, the determinant of (Wm(i, j) )i, j is a multiple of
∏

i gi if
middle term matrixM does not have a full rank. In other cases, the determinant ofM is
not a multiple of

∏
i gi with a high probability. In the case of the GXDH problem, we

can apply the same argument as for the DLIN problem. Hence, if one can recover the∏
gi , one can solve the related problems.

Remark. The important difference between the cryptanalysis of these related problems
and that of the CLT13 scheme is the form of the middle matrix of W. The previous
attack discussed in Sect. 3.2 is based on the fact that the middle matrix is diagonal.
For example, in [8], the authors chose the middle matrix as a block diagonal matrix.6

However, the attack on the related problems in this section does not depend on it.

6Subsequently, it was also showed to be insecure by the extended attack of Coron et al. [13].
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4.1. Computing
∏

i gi from the CLT13 Instances

Here, we are given params and one zero-testing parameter pzt , as described in Sect. 3.1.
Let us considerwuv:=

[
�u · y · �v · yκ−3 · pzt

]
x0
,w(i)

uv := [
�u · �i · �v · yκ−3 · pzt

]
x0
,

where � j = CRT(pi )(πi j · gi/z), and y = CRT(pi )((ri · gi + 1)/z). Our concept of

obtaining
∏

i gi is that determinant of matrix (w
(i)
uv )u,v is typically a multiple of

∏
i gi .

To this end, we deal with the following matrices.

Wy = (wuv)u,v = �T · diag(r1 · g1 + 1, . . . , rn · gn + 1) · �′.
Wi = (w(i)

uv )u,v = �T · diag(πi1 · g1, . . . , πin · gn) · �′,

where� = (πi j )i, j ,�′ = (hi ·gi · (ri ·gi +1)κ−3 ·πik)i,k . BecauseWy is not a multiple
of

∏
i gi , we can obtain multiple

∏
i gi by taking a ratio of the gcd’s of the determinants

of The appropriate subsets of {W1, . . . ,Wτ ,Wy}:
gcd(detW1, . . . , detWn)

gcd(detW1, . . . , detWn, detWy)

= gcd(
∏

i πi1, . . . ,
∏

i πiτ )

gcd(
∏

i πi1gi , . . . ,
∏

i πiτ gi ,
∏

i (ri gi + 1))
·
∏

i

gi

= � ·
∏

i

gi ,

for some integer �. We expect that � consists of only small factors because it is a
common divisor of many random variables. Based on the setting, variables

∏
i ri j are

the products of ri j sampled from each uniform distribution. Here, we assume that the
probability that a multiple of p is sampled according to a uniform distribution is ≤ 1/p.
Under this assumption, integer � is (2n-)smooth (i.e., all its divisors are ≤ 2n) with
probability ≥ 0.9, as we explain below. More general results can be found in [12].

Lemma 2. (Heuristic). Let πi j be an integer described in Sect. 3.1 for i, j ∈ [n]
with n/(1 + log n) > s for some positive integer s. Then, gcd(

∏
i πi1, . . . ,

∏
i πim) is

(2n-)smooth with probability ≥ ζ(s)−1, where ζ(·) is the Riemann zeta function. The
probability is ≥ 0.9 when s ≥ 4.

Proof. Our heuristic assumption is that each ri j is divisible by prime p > 2n with
probability ≤ 1/p for all p. First, we observe that for each j , integer

∏
i πi j is di-

visible by p with probability ≤ 1 − (1 − 1/p)n ≤ n/p. Then, the probability that
gcd(

∏
i πi1, . . . ,

∏
i πin) is divisible by p is≤ (n/p)n . Therefore, the gcd is 2n-smooth

with probability of at least

∏

p>2n

(1 − (n/p)n) >
∏

p>2n

(1 − 1/ps) = ζ(s)−1
∏

p≤2n

(1 − 1/ps)−1 ≥ ζ(s)−1.

Here, the first inequality comes from (n/p)n < 1/ps for n/(1+ log n) > s and p > 2n.
More precisely, we have n > s + s log n > s + s log n/(log p/n) = s log p/(log p/n).
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This implies the previous inequality. The equality is Euler’s identity for the Riemann
zeta function. The latter is decreasing and ζ(4)−1 > 0.9. This completes the proof. �

By Lemma 2, integer � is (2n)-smooth with probability > 0.9. We eliminate it by
exhaustive division by all the integers, i.e., ≤ 2n. This costs Õ(n log x0) = Õ(κ3λ5) bit
operations. This is dominated by the cost of the operations described in Sect. 3.2, which
is Õ(κω+2λ2ω+3).

4.2. Solving the SubM Problem Over the CLT13

We explain how to solve the SubM problem using the result of the previous section. As
mentioned in Sect. 4.1, we consider wu,v = [

�u · enc1(m) · �v · yκ−3 · pzt
]
x0

and a
matrixW = (wu,v)u,v , whereenc1(m) is a level-1 encoding, [CRT(pi )(ri ·g′

i+mi )/z]x0 ,
which we need to distinguish. Then, matrixW can be written as

W = �T · diag(r1 · g′
1 + m1, . . . , rn · g′

n + mn) · �′,

where �T = (πi j )i, j , �′ = (hi · gi · (ri · gi + 1)κ−3 · rik)i,k . The attack only consists
of computing gcd(detW,

∏
i gi ).

If m is uniformly sampled in G, then we expect the probability that mi is zero for
some i is at most n/2α , where α is log(gi ). Hence, in that case, we have αn/2α as an
expected value of log(gcd(detW,

∏
i gi )). For the original setting of α = λ, this is

negligible.
If m is uniformly sampled in G ′, then m1 is zero, and we expect the probability that

the others are zero is (n−1)/2α . Hence, in that case, we have log(gcd(detW,
∏

i gi )) ≈
α +α(n−|I |)/2α , which is at least larger than α − 1. Hence, this value is distinguished
from the previous one.

4.3. Solving the DLIN Problem in CLT13

As we have seen, we assume that
∏

i gi is known. In the DLIN problem, we are given
a matrix of level-1 encodings E = (enc1(m(i, j)))i, j for 1 ≤ i, j ≤ L . We write

enc1(m(i, j)) = CRT(
r (i, j)
k ·gk+m(i, j)

k
z ). Using the same method as above, we compute

matrices Wi, j = X′ · diag(r (i, j)
1 · g1 + m(i, j)

1 , . . . , r (i, j)
n · gn + m(i, j)

n ) · �′ ∈ Z
n×n for

all 1 ≤ i, j ≤ L . We define

W =

⎛

⎜
⎜
⎜
⎝

W11 W12 . . . W1L
W21 W22 . . . W2L

...
. . .

WL1 WL2 . . . WLL

⎞

⎟
⎟
⎟
⎠

∈ Z
nL×nL .

Next, we evaluate the determinant ofW. It satisfies the following equation:
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det(W) = det(�)L · det(�′)L · det

⎛

⎜
⎜
⎜
⎝

D1,1 D1,2 . . . D1,L
D2,1 D2,2 . . . D2,L

...
. . .

DL ,1 DL ,2 . . . DL ,L

⎞

⎟
⎟
⎟
⎠

,

whereDi, j = diag(r (i, j)
1 · g1 +m(i, j)

1 , . . . , r (i, j)
n · gn +m(i, j)

n ) for all i, j . For simplicity,

let � = det(�)L · det(�′)L , Qk = (r (i, j)
k · gk + m(i, j)

k )i, j , and Pk = (m(i, j)
k )i, j . Then,

detW can be written as � · ∏
k detQk .

To distinguish between the instances of DLIN, we compute detW and check whether
it is divisible by

∏
k gk . If E is sampled from a full-rank matrix, the determinant of Pk

is nonzero for some k. Hence, detW cannot be a multiple of
∏

k gk . In the other case,
then det Pi = 0 for all i . Hence, detW is a multiple of

∏
k gk because Qk is congruent

to Pk in modulo gk . The total bit-complexity of the attack is Õ(κω+2λ2ω+3 + Lωκ2λ3).

4.4. Solving the GXDH Problem in CLT13

Without the loss of generality, we assume that t = 1 in the GXDH problem. The first
step in the attack is to obtain

∏
i gi from (params,pzt ). Similar to Sect. 4.1, we compute

Wy(1) and Wi by using (params) as follows (for 1 ≤ i ≤ n):

Wy(1) = ([y(1) · �
(2)
u · �

(3)
v · y(4) . . . y(κ) · pzt ]x0)u,v

= (�(2))T · diag(r (1)
1 · g1 + 1, . . . , r (1)

n · gn + 1) · diag(h′
1, . . . , h

′
n) · �(3),

Wi = ([�(1)
i · �

(2)
u · �

(3)
v · y(4) . . . y(κ) · pzt ]x0)u,v

= (�(2))T · diag(π
(1)
i1 · g1, . . . , π(1)

in · gn) · diag(h′
1, . . . , h

′
n) · �(3),

where �(2) = (π
(2)
ui )u,i , h̃i = hi · gi · ∏κ

k=4(r
(k)
i · gi + 1) · p̂i , and �(3) = (π

(3)
iv )i,v .

Similar to Sect. 4.1, we obtain a multiple of
∏

i gi by taking a ratio of the gcds of the
determinants of the appropriate subsets of {W1, . . . ,Wn,Wy(1)}:

gcd(detW1, . . . , detWn)

gcd(detW1, . . . , detWn, detWy(1) )
= � ·

∏

i

gi ,

for some integer �. By Lemma 2, integer � is (2n)-smooth with probability ≥ 0.9.
We eliminate it by trial division by all the integers ≤ 2n. Thus, we can obtain

∏
i gi in

complexity time Õ(κω+3λ2ω+6).
The rest is similar to the DLIN attack in Sect. 4.3. In the GXDH problem, we are

given three encodings enc1(a) = CRT(
rak ·gk+ak

z1
),enc1(b) = CRT(

rbk ·gk+bk
z1

), and

enc1(c) = CRT(
rck ·gk+ck

z1
). Next, we repeat the procedure for the construction ofWy(1)

by replacing y(1) with enc1(a), enc1(b), and enc1(c), respectively. Then, we obtain:

Wa = (�(2))T · diag(ra1 · g1 + a1, . . . , ran · gn + an) · diag(h′
1, . . . , h

′
n) · �(3),

Wb = (�(2))T · diag(rb1 · g1 + b1, . . . , rbn · gn + bn) · diag(h′
1, . . . , h

′
n) · �(3),

Wc = (�(2))T · diag(rc1 · g1 + c1, . . . , rcn · gn + cn) · diag(h′
1, . . . , h

′
n) · �(3).
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As the last step, we compute:

W =
(
Wc Wa

Wb Wy(1)

)

∈ Z
2n×2n and

detW = �′ ·
∏

i

(
(rai · gi + ai ) · (rbi · gi + bi ) − (rci · gi + ci ) · (r (1)

i · gi + 1)
)

,

where �′ = det(�(2))2 · det(�(3))2 · (
∏

i h
′
i )
2. If c is equal to a · b, then the quantity

above has
∏

i gi as a large factor. If c is uniformly and independently sampled in G,
then the quantity above is independent of

∏
i gi . The cost of the attack is also bounded

by Õ(κω+2λ2ω+3).

5. Conclusion

This study exhibits a method to recover in polynomial time all the secret values in the
CLT13 scheme with a low-level encoding of zero. In addition, we propose a direct algo-
rithm to solve the problems associated with the CLT13 scheme. Consequently, several
applications of the CLT13 scheme are impacted.
Because the security of the general-purpose obfuscation schemes in theCLT13 scheme

has not been yet clarified, a natural line of research is to extend the range of the attackable
graded encoding schemes for the application.
In addition, as a main technique for solving the CLT13 scheme, we introduce a new

problemCRT-ACDwith an auxiliary input. Independently, solving theCRT-ACD prob-
lem is still an open problem. Hence, studying the relation between the two problems
will also be an interesting topic.
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